Cargando…
Co‐evolutionary adaptations of Acinetobacter baumannii and a clinical carbapenemase‐encoding plasmid during carbapenem exposure
OXA‐23 is the predominant carbapenemase in carbapenem‐resistant Acinetobacter baumannii. The co‐evolutionary dynamics of A. baumannii and OXA‐23‐encoding plasmids are poorly understood. Here, we transformed A. baumannii ATCC 17978 with pAZJ221, a bla (OXA−23)‐containing plasmid from clinical A. baum...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9309461/ https://www.ncbi.nlm.nih.gov/pubmed/35899254 http://dx.doi.org/10.1111/eva.13441 |
_version_ | 1784753167972433920 |
---|---|
author | Zhang, Linyue Fu, Ying Zhang, Linghong Xu, Qingye Yang, Yunxing He, Jintao Leptihn, Sebastian Loh, Belinda Moran, Robert A. van Schaik, Willem Toleman, Mark Alexander Chen, Qiong Liu, Lilin Yu, Yunsong Hua, Xiaoting |
author_facet | Zhang, Linyue Fu, Ying Zhang, Linghong Xu, Qingye Yang, Yunxing He, Jintao Leptihn, Sebastian Loh, Belinda Moran, Robert A. van Schaik, Willem Toleman, Mark Alexander Chen, Qiong Liu, Lilin Yu, Yunsong Hua, Xiaoting |
author_sort | Zhang, Linyue |
collection | PubMed |
description | OXA‐23 is the predominant carbapenemase in carbapenem‐resistant Acinetobacter baumannii. The co‐evolutionary dynamics of A. baumannii and OXA‐23‐encoding plasmids are poorly understood. Here, we transformed A. baumannii ATCC 17978 with pAZJ221, a bla (OXA−23)‐containing plasmid from clinical A. baumannii isolate A221, and subjected the transformant to experimental evolution in the presence of a sub‐inhibitory concentration of imipenem for nearly 400 generations. We used population sequencing to track genetic changes at six time points and evaluated phenotypic changes. Increased fitness of evolving populations, temporary duplication of bla (OXA−23) in pAZJ221, interfering allele dynamics, and chromosomal locus‐level parallelism were observed. To characterize genotype‐to‐phenotype associations, we focused on six mutations in parallel targets predicted to affect small RNAs and a cyclic dimeric (3′ → 5′) GMP‐metabolizing protein. Six isogenic mutants with or without pAZJ221 were engineered to test for the effects of these mutations on fitness costs and plasmid kinetics, and the evolved plasmid containing two copies of bla (OXA−23) was transferred to ancestral ATCC 17978. Five of the six mutations contributed to improved fitness in the presence of pAZJ221 under imipenem pressure, and all but one of them impaired plasmid conjugation ability. The duplication of bla (OXA−23) increased host fitness under carbapenem pressure but imposed a burden on the host in antibiotic‐free media relative to the ancestral pAZJ221. Overall, our study provides a framework for the co‐evolution of A. baumannii and a clinical bla (OXA−23)‐containing plasmid in the presence of imipenem, involving early bla (OXA−23) duplication followed by chromosomal adaptations that improved the fitness of plasmid‐carrying cells. |
format | Online Article Text |
id | pubmed-9309461 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-93094612022-07-26 Co‐evolutionary adaptations of Acinetobacter baumannii and a clinical carbapenemase‐encoding plasmid during carbapenem exposure Zhang, Linyue Fu, Ying Zhang, Linghong Xu, Qingye Yang, Yunxing He, Jintao Leptihn, Sebastian Loh, Belinda Moran, Robert A. van Schaik, Willem Toleman, Mark Alexander Chen, Qiong Liu, Lilin Yu, Yunsong Hua, Xiaoting Evol Appl Original Articles OXA‐23 is the predominant carbapenemase in carbapenem‐resistant Acinetobacter baumannii. The co‐evolutionary dynamics of A. baumannii and OXA‐23‐encoding plasmids are poorly understood. Here, we transformed A. baumannii ATCC 17978 with pAZJ221, a bla (OXA−23)‐containing plasmid from clinical A. baumannii isolate A221, and subjected the transformant to experimental evolution in the presence of a sub‐inhibitory concentration of imipenem for nearly 400 generations. We used population sequencing to track genetic changes at six time points and evaluated phenotypic changes. Increased fitness of evolving populations, temporary duplication of bla (OXA−23) in pAZJ221, interfering allele dynamics, and chromosomal locus‐level parallelism were observed. To characterize genotype‐to‐phenotype associations, we focused on six mutations in parallel targets predicted to affect small RNAs and a cyclic dimeric (3′ → 5′) GMP‐metabolizing protein. Six isogenic mutants with or without pAZJ221 were engineered to test for the effects of these mutations on fitness costs and plasmid kinetics, and the evolved plasmid containing two copies of bla (OXA−23) was transferred to ancestral ATCC 17978. Five of the six mutations contributed to improved fitness in the presence of pAZJ221 under imipenem pressure, and all but one of them impaired plasmid conjugation ability. The duplication of bla (OXA−23) increased host fitness under carbapenem pressure but imposed a burden on the host in antibiotic‐free media relative to the ancestral pAZJ221. Overall, our study provides a framework for the co‐evolution of A. baumannii and a clinical bla (OXA−23)‐containing plasmid in the presence of imipenem, involving early bla (OXA−23) duplication followed by chromosomal adaptations that improved the fitness of plasmid‐carrying cells. John Wiley and Sons Inc. 2022-07-05 /pmc/articles/PMC9309461/ /pubmed/35899254 http://dx.doi.org/10.1111/eva.13441 Text en © 2022 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Articles Zhang, Linyue Fu, Ying Zhang, Linghong Xu, Qingye Yang, Yunxing He, Jintao Leptihn, Sebastian Loh, Belinda Moran, Robert A. van Schaik, Willem Toleman, Mark Alexander Chen, Qiong Liu, Lilin Yu, Yunsong Hua, Xiaoting Co‐evolutionary adaptations of Acinetobacter baumannii and a clinical carbapenemase‐encoding plasmid during carbapenem exposure |
title | Co‐evolutionary adaptations of Acinetobacter baumannii and a clinical carbapenemase‐encoding plasmid during carbapenem exposure |
title_full | Co‐evolutionary adaptations of Acinetobacter baumannii and a clinical carbapenemase‐encoding plasmid during carbapenem exposure |
title_fullStr | Co‐evolutionary adaptations of Acinetobacter baumannii and a clinical carbapenemase‐encoding plasmid during carbapenem exposure |
title_full_unstemmed | Co‐evolutionary adaptations of Acinetobacter baumannii and a clinical carbapenemase‐encoding plasmid during carbapenem exposure |
title_short | Co‐evolutionary adaptations of Acinetobacter baumannii and a clinical carbapenemase‐encoding plasmid during carbapenem exposure |
title_sort | co‐evolutionary adaptations of acinetobacter baumannii and a clinical carbapenemase‐encoding plasmid during carbapenem exposure |
topic | Original Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9309461/ https://www.ncbi.nlm.nih.gov/pubmed/35899254 http://dx.doi.org/10.1111/eva.13441 |
work_keys_str_mv | AT zhanglinyue coevolutionaryadaptationsofacinetobacterbaumanniiandaclinicalcarbapenemaseencodingplasmidduringcarbapenemexposure AT fuying coevolutionaryadaptationsofacinetobacterbaumanniiandaclinicalcarbapenemaseencodingplasmidduringcarbapenemexposure AT zhanglinghong coevolutionaryadaptationsofacinetobacterbaumanniiandaclinicalcarbapenemaseencodingplasmidduringcarbapenemexposure AT xuqingye coevolutionaryadaptationsofacinetobacterbaumanniiandaclinicalcarbapenemaseencodingplasmidduringcarbapenemexposure AT yangyunxing coevolutionaryadaptationsofacinetobacterbaumanniiandaclinicalcarbapenemaseencodingplasmidduringcarbapenemexposure AT hejintao coevolutionaryadaptationsofacinetobacterbaumanniiandaclinicalcarbapenemaseencodingplasmidduringcarbapenemexposure AT leptihnsebastian coevolutionaryadaptationsofacinetobacterbaumanniiandaclinicalcarbapenemaseencodingplasmidduringcarbapenemexposure AT lohbelinda coevolutionaryadaptationsofacinetobacterbaumanniiandaclinicalcarbapenemaseencodingplasmidduringcarbapenemexposure AT moranroberta coevolutionaryadaptationsofacinetobacterbaumanniiandaclinicalcarbapenemaseencodingplasmidduringcarbapenemexposure AT vanschaikwillem coevolutionaryadaptationsofacinetobacterbaumanniiandaclinicalcarbapenemaseencodingplasmidduringcarbapenemexposure AT tolemanmarkalexander coevolutionaryadaptationsofacinetobacterbaumanniiandaclinicalcarbapenemaseencodingplasmidduringcarbapenemexposure AT chenqiong coevolutionaryadaptationsofacinetobacterbaumanniiandaclinicalcarbapenemaseencodingplasmidduringcarbapenemexposure AT liulilin coevolutionaryadaptationsofacinetobacterbaumanniiandaclinicalcarbapenemaseencodingplasmidduringcarbapenemexposure AT yuyunsong coevolutionaryadaptationsofacinetobacterbaumanniiandaclinicalcarbapenemaseencodingplasmidduringcarbapenemexposure AT huaxiaoting coevolutionaryadaptationsofacinetobacterbaumanniiandaclinicalcarbapenemaseencodingplasmidduringcarbapenemexposure |