Cargando…

Co‐evolutionary adaptations of Acinetobacter baumannii and a clinical carbapenemase‐encoding plasmid during carbapenem exposure

OXA‐23 is the predominant carbapenemase in carbapenem‐resistant Acinetobacter baumannii. The co‐evolutionary dynamics of A. baumannii and OXA‐23‐encoding plasmids are poorly understood. Here, we transformed A. baumannii ATCC 17978 with pAZJ221, a bla (OXA−23)‐containing plasmid from clinical A. baum...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Linyue, Fu, Ying, Zhang, Linghong, Xu, Qingye, Yang, Yunxing, He, Jintao, Leptihn, Sebastian, Loh, Belinda, Moran, Robert A., van Schaik, Willem, Toleman, Mark Alexander, Chen, Qiong, Liu, Lilin, Yu, Yunsong, Hua, Xiaoting
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9309461/
https://www.ncbi.nlm.nih.gov/pubmed/35899254
http://dx.doi.org/10.1111/eva.13441
_version_ 1784753167972433920
author Zhang, Linyue
Fu, Ying
Zhang, Linghong
Xu, Qingye
Yang, Yunxing
He, Jintao
Leptihn, Sebastian
Loh, Belinda
Moran, Robert A.
van Schaik, Willem
Toleman, Mark Alexander
Chen, Qiong
Liu, Lilin
Yu, Yunsong
Hua, Xiaoting
author_facet Zhang, Linyue
Fu, Ying
Zhang, Linghong
Xu, Qingye
Yang, Yunxing
He, Jintao
Leptihn, Sebastian
Loh, Belinda
Moran, Robert A.
van Schaik, Willem
Toleman, Mark Alexander
Chen, Qiong
Liu, Lilin
Yu, Yunsong
Hua, Xiaoting
author_sort Zhang, Linyue
collection PubMed
description OXA‐23 is the predominant carbapenemase in carbapenem‐resistant Acinetobacter baumannii. The co‐evolutionary dynamics of A. baumannii and OXA‐23‐encoding plasmids are poorly understood. Here, we transformed A. baumannii ATCC 17978 with pAZJ221, a bla (OXA−23)‐containing plasmid from clinical A. baumannii isolate A221, and subjected the transformant to experimental evolution in the presence of a sub‐inhibitory concentration of imipenem for nearly 400 generations. We used population sequencing to track genetic changes at six time points and evaluated phenotypic changes. Increased fitness of evolving populations, temporary duplication of bla (OXA−23) in pAZJ221, interfering allele dynamics, and chromosomal locus‐level parallelism were observed. To characterize genotype‐to‐phenotype associations, we focused on six mutations in parallel targets predicted to affect small RNAs and a cyclic dimeric (3′ → 5′) GMP‐metabolizing protein. Six isogenic mutants with or without pAZJ221 were engineered to test for the effects of these mutations on fitness costs and plasmid kinetics, and the evolved plasmid containing two copies of bla (OXA−23) was transferred to ancestral ATCC 17978. Five of the six mutations contributed to improved fitness in the presence of pAZJ221 under imipenem pressure, and all but one of them impaired plasmid conjugation ability. The duplication of bla (OXA−23) increased host fitness under carbapenem pressure but imposed a burden on the host in antibiotic‐free media relative to the ancestral pAZJ221. Overall, our study provides a framework for the co‐evolution of A. baumannii and a clinical bla (OXA−23)‐containing plasmid in the presence of imipenem, involving early bla (OXA−23) duplication followed by chromosomal adaptations that improved the fitness of plasmid‐carrying cells.
format Online
Article
Text
id pubmed-9309461
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-93094612022-07-26 Co‐evolutionary adaptations of Acinetobacter baumannii and a clinical carbapenemase‐encoding plasmid during carbapenem exposure Zhang, Linyue Fu, Ying Zhang, Linghong Xu, Qingye Yang, Yunxing He, Jintao Leptihn, Sebastian Loh, Belinda Moran, Robert A. van Schaik, Willem Toleman, Mark Alexander Chen, Qiong Liu, Lilin Yu, Yunsong Hua, Xiaoting Evol Appl Original Articles OXA‐23 is the predominant carbapenemase in carbapenem‐resistant Acinetobacter baumannii. The co‐evolutionary dynamics of A. baumannii and OXA‐23‐encoding plasmids are poorly understood. Here, we transformed A. baumannii ATCC 17978 with pAZJ221, a bla (OXA−23)‐containing plasmid from clinical A. baumannii isolate A221, and subjected the transformant to experimental evolution in the presence of a sub‐inhibitory concentration of imipenem for nearly 400 generations. We used population sequencing to track genetic changes at six time points and evaluated phenotypic changes. Increased fitness of evolving populations, temporary duplication of bla (OXA−23) in pAZJ221, interfering allele dynamics, and chromosomal locus‐level parallelism were observed. To characterize genotype‐to‐phenotype associations, we focused on six mutations in parallel targets predicted to affect small RNAs and a cyclic dimeric (3′ → 5′) GMP‐metabolizing protein. Six isogenic mutants with or without pAZJ221 were engineered to test for the effects of these mutations on fitness costs and plasmid kinetics, and the evolved plasmid containing two copies of bla (OXA−23) was transferred to ancestral ATCC 17978. Five of the six mutations contributed to improved fitness in the presence of pAZJ221 under imipenem pressure, and all but one of them impaired plasmid conjugation ability. The duplication of bla (OXA−23) increased host fitness under carbapenem pressure but imposed a burden on the host in antibiotic‐free media relative to the ancestral pAZJ221. Overall, our study provides a framework for the co‐evolution of A. baumannii and a clinical bla (OXA−23)‐containing plasmid in the presence of imipenem, involving early bla (OXA−23) duplication followed by chromosomal adaptations that improved the fitness of plasmid‐carrying cells. John Wiley and Sons Inc. 2022-07-05 /pmc/articles/PMC9309461/ /pubmed/35899254 http://dx.doi.org/10.1111/eva.13441 Text en © 2022 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Articles
Zhang, Linyue
Fu, Ying
Zhang, Linghong
Xu, Qingye
Yang, Yunxing
He, Jintao
Leptihn, Sebastian
Loh, Belinda
Moran, Robert A.
van Schaik, Willem
Toleman, Mark Alexander
Chen, Qiong
Liu, Lilin
Yu, Yunsong
Hua, Xiaoting
Co‐evolutionary adaptations of Acinetobacter baumannii and a clinical carbapenemase‐encoding plasmid during carbapenem exposure
title Co‐evolutionary adaptations of Acinetobacter baumannii and a clinical carbapenemase‐encoding plasmid during carbapenem exposure
title_full Co‐evolutionary adaptations of Acinetobacter baumannii and a clinical carbapenemase‐encoding plasmid during carbapenem exposure
title_fullStr Co‐evolutionary adaptations of Acinetobacter baumannii and a clinical carbapenemase‐encoding plasmid during carbapenem exposure
title_full_unstemmed Co‐evolutionary adaptations of Acinetobacter baumannii and a clinical carbapenemase‐encoding plasmid during carbapenem exposure
title_short Co‐evolutionary adaptations of Acinetobacter baumannii and a clinical carbapenemase‐encoding plasmid during carbapenem exposure
title_sort co‐evolutionary adaptations of acinetobacter baumannii and a clinical carbapenemase‐encoding plasmid during carbapenem exposure
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9309461/
https://www.ncbi.nlm.nih.gov/pubmed/35899254
http://dx.doi.org/10.1111/eva.13441
work_keys_str_mv AT zhanglinyue coevolutionaryadaptationsofacinetobacterbaumanniiandaclinicalcarbapenemaseencodingplasmidduringcarbapenemexposure
AT fuying coevolutionaryadaptationsofacinetobacterbaumanniiandaclinicalcarbapenemaseencodingplasmidduringcarbapenemexposure
AT zhanglinghong coevolutionaryadaptationsofacinetobacterbaumanniiandaclinicalcarbapenemaseencodingplasmidduringcarbapenemexposure
AT xuqingye coevolutionaryadaptationsofacinetobacterbaumanniiandaclinicalcarbapenemaseencodingplasmidduringcarbapenemexposure
AT yangyunxing coevolutionaryadaptationsofacinetobacterbaumanniiandaclinicalcarbapenemaseencodingplasmidduringcarbapenemexposure
AT hejintao coevolutionaryadaptationsofacinetobacterbaumanniiandaclinicalcarbapenemaseencodingplasmidduringcarbapenemexposure
AT leptihnsebastian coevolutionaryadaptationsofacinetobacterbaumanniiandaclinicalcarbapenemaseencodingplasmidduringcarbapenemexposure
AT lohbelinda coevolutionaryadaptationsofacinetobacterbaumanniiandaclinicalcarbapenemaseencodingplasmidduringcarbapenemexposure
AT moranroberta coevolutionaryadaptationsofacinetobacterbaumanniiandaclinicalcarbapenemaseencodingplasmidduringcarbapenemexposure
AT vanschaikwillem coevolutionaryadaptationsofacinetobacterbaumanniiandaclinicalcarbapenemaseencodingplasmidduringcarbapenemexposure
AT tolemanmarkalexander coevolutionaryadaptationsofacinetobacterbaumanniiandaclinicalcarbapenemaseencodingplasmidduringcarbapenemexposure
AT chenqiong coevolutionaryadaptationsofacinetobacterbaumanniiandaclinicalcarbapenemaseencodingplasmidduringcarbapenemexposure
AT liulilin coevolutionaryadaptationsofacinetobacterbaumanniiandaclinicalcarbapenemaseencodingplasmidduringcarbapenemexposure
AT yuyunsong coevolutionaryadaptationsofacinetobacterbaumanniiandaclinicalcarbapenemaseencodingplasmidduringcarbapenemexposure
AT huaxiaoting coevolutionaryadaptationsofacinetobacterbaumanniiandaclinicalcarbapenemaseencodingplasmidduringcarbapenemexposure