Cargando…

Non-viral CRISPR activation system targeting VEGF-A and TGF-β1 for enhanced osteogenesis of pre-osteoblasts implanted with dual-crosslinked hydrogel

Healing of large calvarial bone defects remains challenge but may be improved by stimulating bone regeneration of implanted cells. The aim of this study is to specially co-activate transforming growth factor β1 (TGF-β1) and vascular endothelial growth factor (VEGF-A) genes expressions in pre-osteobl...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Guo, Deng, Shaohui, Zuo, Mingxiang, Wang, Jin, Cheng, Du, Chen, Bin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9309523/
https://www.ncbi.nlm.nih.gov/pubmed/35898441
http://dx.doi.org/10.1016/j.mtbio.2022.100356
Descripción
Sumario:Healing of large calvarial bone defects remains challenge but may be improved by stimulating bone regeneration of implanted cells. The aim of this study is to specially co-activate transforming growth factor β1 (TGF-β1) and vascular endothelial growth factor (VEGF-A) genes expressions in pre-osteoblast MC3T3-E1 cells through the non-viral CRISPR activation (CRISPRa) system to promote osteogenesis. A cationic copolymer carrying nucleus localizing peptides and proton sponge groups dimethyl-histidine was synthesized to deliver CRISPRa system into MC3T3-E1 cells with high cellular uptake, lysosomal escape, and nuclear translocation, which activated VEGF-A and TGF-β1 genes expressions and thereby additively or synergistically induced several osteogenic genes expressions. A tunable dual-crosslinked hydrogel was developed to implant the above engineered cells into mice calvaria bone defect site to promote bone healing in vivo. The combination of multi-genes activation through non-viral CRISPRa system and tunable dual-crosslinked hydrogel provides a versatile strategy for promoting bone healing with synergistic effect.