Cargando…
Decoding the Role of Epigenetics in Breast Cancer Using Formal Modeling and Machine-Learning Methods
Breast carcinogenesis is known to be instigated by genetic and epigenetic modifications impacting multiple cellular signaling cascades, thus making its prevention and treatments a challenging endeavor. However, epigenetic modification, particularly DNA methylation-mediated silencing of key TSGs, is...
Autores principales: | Asim, Ayesha, Kiani, Yusra Sajid, Saeed, Muhammad Tariq, Jabeen, Ishrat |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9309526/ https://www.ncbi.nlm.nih.gov/pubmed/35898303 http://dx.doi.org/10.3389/fmolb.2022.882738 |
Ejemplares similares
-
Applying Machine Learning of Erythrocytes Dynamic Antigens Store in Medicine
por: Rafea, Mahmoud, et al.
Publicado: (2019) -
Decoding Partner Specificity of Opioid Receptor Family
por: Barreto, Carlos A. V., et al.
Publicado: (2021) -
Lipophilic Metabolic
Efficiency (LipMetE) and Drug
Efficiency Indices to Explore the Metabolic Properties of the Substrates
of Selected Cytochrome P450 Isoforms
por: Kiani, Yusra Sajid, et al.
Publicado: (2019) -
Predicting clinical response to everolimus in ER+ breast cancers using machine-learning
por: Nath, Aritro, et al.
Publicado: (2022) -
Machine learning-driven exploration of drug therapies for triple-negative breast cancer treatment
por: Kaushik, Aman Chandra, et al.
Publicado: (2023)