Cargando…
Protective Efficacy of H9N2 Avian Influenza Vaccines Inactivated by Ionizing Radiation Methods Administered by the Parenteral or Mucosal Routes
H9N2 viruses have become, over the last 20 years, one of the most diffused poultry pathogens and have reached a level of endemicity in several countries. Attempts to control the spread and reduce the circulation of H9N2 have relied mainly on vaccination in endemic countries. However, the high level...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9309530/ https://www.ncbi.nlm.nih.gov/pubmed/35898545 http://dx.doi.org/10.3389/fvets.2022.916108 |
_version_ | 1784753185267646464 |
---|---|
author | Bortolami, Alessio Mazzetto, Eva Kangethe, Richard Thiga Wijewardana, Viskam Barbato, Mario Porfiri, Luca Maniero, Silvia Mazzacan, Elisa Budai, Jane Marciano, Sabrina Panzarin, Valentina Terregino, Calogero Bonfante, Francesco Cattoli, Giovanni |
author_facet | Bortolami, Alessio Mazzetto, Eva Kangethe, Richard Thiga Wijewardana, Viskam Barbato, Mario Porfiri, Luca Maniero, Silvia Mazzacan, Elisa Budai, Jane Marciano, Sabrina Panzarin, Valentina Terregino, Calogero Bonfante, Francesco Cattoli, Giovanni |
author_sort | Bortolami, Alessio |
collection | PubMed |
description | H9N2 viruses have become, over the last 20 years, one of the most diffused poultry pathogens and have reached a level of endemicity in several countries. Attempts to control the spread and reduce the circulation of H9N2 have relied mainly on vaccination in endemic countries. However, the high level of adaptation to poultry, testified by low minimum infectious doses, replication to high titers, and high transmissibility, has severely hampered the results of vaccination campaigns. Commercially available vaccines have demonstrated high efficacy in protecting against clinical disease, but variable results have also been observed in reducing the level of replication and viral shedding in domestic poultry species. Antigenic drift and increased chances of zoonotic infections are the results of incomplete protection offered by the currently available vaccines, of which the vast majority are based on formalin-inactivated whole virus antigens. In our work, we evaluated experimental vaccines based on an H9N2 virus, inactivated by irradiation treatment, in reducing viral shedding upon different challenge doses and compared their efficacy with formalin-inactivated vaccines. Moreover, we evaluated mucosal delivery of inactivated antigens as an alternative route to subcutaneous and intramuscular vaccination. The results showed complete protection and prevention of replication in subcutaneously vaccinated Specific Pathogen Free White Leghorn chickens at low-to-intermediate challenge doses but a limited reduction of shedding at a high challenge dose. Mucosally vaccinated chickens showed a more variable response to experimental infection at all tested challenge doses and the main effect of vaccination attained the reduction of infected birds in the early phase of infection. Concerning mucosal vaccination, the irradiated vaccine was the only one affording complete protection from infection at the lowest challenge dose. Vaccine formulations based on H9N2 inactivated by irradiation demonstrated a potential for better performances than vaccines based on the formalin-inactivated antigen in terms of reduction of shedding and prevention of infection. |
format | Online Article Text |
id | pubmed-9309530 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-93095302022-07-26 Protective Efficacy of H9N2 Avian Influenza Vaccines Inactivated by Ionizing Radiation Methods Administered by the Parenteral or Mucosal Routes Bortolami, Alessio Mazzetto, Eva Kangethe, Richard Thiga Wijewardana, Viskam Barbato, Mario Porfiri, Luca Maniero, Silvia Mazzacan, Elisa Budai, Jane Marciano, Sabrina Panzarin, Valentina Terregino, Calogero Bonfante, Francesco Cattoli, Giovanni Front Vet Sci Veterinary Science H9N2 viruses have become, over the last 20 years, one of the most diffused poultry pathogens and have reached a level of endemicity in several countries. Attempts to control the spread and reduce the circulation of H9N2 have relied mainly on vaccination in endemic countries. However, the high level of adaptation to poultry, testified by low minimum infectious doses, replication to high titers, and high transmissibility, has severely hampered the results of vaccination campaigns. Commercially available vaccines have demonstrated high efficacy in protecting against clinical disease, but variable results have also been observed in reducing the level of replication and viral shedding in domestic poultry species. Antigenic drift and increased chances of zoonotic infections are the results of incomplete protection offered by the currently available vaccines, of which the vast majority are based on formalin-inactivated whole virus antigens. In our work, we evaluated experimental vaccines based on an H9N2 virus, inactivated by irradiation treatment, in reducing viral shedding upon different challenge doses and compared their efficacy with formalin-inactivated vaccines. Moreover, we evaluated mucosal delivery of inactivated antigens as an alternative route to subcutaneous and intramuscular vaccination. The results showed complete protection and prevention of replication in subcutaneously vaccinated Specific Pathogen Free White Leghorn chickens at low-to-intermediate challenge doses but a limited reduction of shedding at a high challenge dose. Mucosally vaccinated chickens showed a more variable response to experimental infection at all tested challenge doses and the main effect of vaccination attained the reduction of infected birds in the early phase of infection. Concerning mucosal vaccination, the irradiated vaccine was the only one affording complete protection from infection at the lowest challenge dose. Vaccine formulations based on H9N2 inactivated by irradiation demonstrated a potential for better performances than vaccines based on the formalin-inactivated antigen in terms of reduction of shedding and prevention of infection. Frontiers Media S.A. 2022-07-11 /pmc/articles/PMC9309530/ /pubmed/35898545 http://dx.doi.org/10.3389/fvets.2022.916108 Text en Copyright © 2022 Bortolami, Mazzetto, Kangethe, Wijewardana, Barbato, Porfiri, Maniero, Mazzacan, Budai, Marciano, Panzarin, Terregino, Bonfante and Cattoli. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Veterinary Science Bortolami, Alessio Mazzetto, Eva Kangethe, Richard Thiga Wijewardana, Viskam Barbato, Mario Porfiri, Luca Maniero, Silvia Mazzacan, Elisa Budai, Jane Marciano, Sabrina Panzarin, Valentina Terregino, Calogero Bonfante, Francesco Cattoli, Giovanni Protective Efficacy of H9N2 Avian Influenza Vaccines Inactivated by Ionizing Radiation Methods Administered by the Parenteral or Mucosal Routes |
title | Protective Efficacy of H9N2 Avian Influenza Vaccines Inactivated by Ionizing Radiation Methods Administered by the Parenteral or Mucosal Routes |
title_full | Protective Efficacy of H9N2 Avian Influenza Vaccines Inactivated by Ionizing Radiation Methods Administered by the Parenteral or Mucosal Routes |
title_fullStr | Protective Efficacy of H9N2 Avian Influenza Vaccines Inactivated by Ionizing Radiation Methods Administered by the Parenteral or Mucosal Routes |
title_full_unstemmed | Protective Efficacy of H9N2 Avian Influenza Vaccines Inactivated by Ionizing Radiation Methods Administered by the Parenteral or Mucosal Routes |
title_short | Protective Efficacy of H9N2 Avian Influenza Vaccines Inactivated by Ionizing Radiation Methods Administered by the Parenteral or Mucosal Routes |
title_sort | protective efficacy of h9n2 avian influenza vaccines inactivated by ionizing radiation methods administered by the parenteral or mucosal routes |
topic | Veterinary Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9309530/ https://www.ncbi.nlm.nih.gov/pubmed/35898545 http://dx.doi.org/10.3389/fvets.2022.916108 |
work_keys_str_mv | AT bortolamialessio protectiveefficacyofh9n2avianinfluenzavaccinesinactivatedbyionizingradiationmethodsadministeredbytheparenteralormucosalroutes AT mazzettoeva protectiveefficacyofh9n2avianinfluenzavaccinesinactivatedbyionizingradiationmethodsadministeredbytheparenteralormucosalroutes AT kangetherichardthiga protectiveefficacyofh9n2avianinfluenzavaccinesinactivatedbyionizingradiationmethodsadministeredbytheparenteralormucosalroutes AT wijewardanaviskam protectiveefficacyofh9n2avianinfluenzavaccinesinactivatedbyionizingradiationmethodsadministeredbytheparenteralormucosalroutes AT barbatomario protectiveefficacyofh9n2avianinfluenzavaccinesinactivatedbyionizingradiationmethodsadministeredbytheparenteralormucosalroutes AT porfiriluca protectiveefficacyofh9n2avianinfluenzavaccinesinactivatedbyionizingradiationmethodsadministeredbytheparenteralormucosalroutes AT manierosilvia protectiveefficacyofh9n2avianinfluenzavaccinesinactivatedbyionizingradiationmethodsadministeredbytheparenteralormucosalroutes AT mazzacanelisa protectiveefficacyofh9n2avianinfluenzavaccinesinactivatedbyionizingradiationmethodsadministeredbytheparenteralormucosalroutes AT budaijane protectiveefficacyofh9n2avianinfluenzavaccinesinactivatedbyionizingradiationmethodsadministeredbytheparenteralormucosalroutes AT marcianosabrina protectiveefficacyofh9n2avianinfluenzavaccinesinactivatedbyionizingradiationmethodsadministeredbytheparenteralormucosalroutes AT panzarinvalentina protectiveefficacyofh9n2avianinfluenzavaccinesinactivatedbyionizingradiationmethodsadministeredbytheparenteralormucosalroutes AT terreginocalogero protectiveefficacyofh9n2avianinfluenzavaccinesinactivatedbyionizingradiationmethodsadministeredbytheparenteralormucosalroutes AT bonfantefrancesco protectiveefficacyofh9n2avianinfluenzavaccinesinactivatedbyionizingradiationmethodsadministeredbytheparenteralormucosalroutes AT cattoligiovanni protectiveefficacyofh9n2avianinfluenzavaccinesinactivatedbyionizingradiationmethodsadministeredbytheparenteralormucosalroutes |