Cargando…
An inductive graph neural network model for compound–protein interaction prediction based on a homogeneous graph
Identifying the potential compound–protein interactions (CPIs) plays an essential role in drug development. The computational approaches for CPI prediction can reduce time and costs of experimental methods and have benefited from the continuously improved graph representation learning. However, most...
Autores principales: | Wan, Xiaozhe, Wu, Xiaolong, Wang, Dingyan, Tan, Xiaoqin, Liu, Xiaohong, Fu, Zunyun, Jiang, Hualiang, Zheng, Mingyue, Li, Xutong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9310259/ https://www.ncbi.nlm.nih.gov/pubmed/35275993 http://dx.doi.org/10.1093/bib/bbac073 |
Ejemplares similares
-
Drug repositioning based on weighted local information augmented graph neural network
por: Meng, Yajie, et al.
Publicado: (2023) -
Predicting gene regulatory links from single-cell RNA-seq data using graph neural networks
por: Mao, Guo, et al.
Publicado: (2023) -
cropCSM: designing safe and potent herbicides with graph-based signatures
por: Pires, Douglas E V, et al.
Publicado: (2022) -
Ensembles of knowledge graph embedding models improve predictions for drug discovery
por: Rivas-Barragan, Daniel, et al.
Publicado: (2022) -
SMG: self-supervised masked graph learning for cancer gene identification
por: Cui, Yan, et al.
Publicado: (2023)