Cargando…
Accuracy of the Traditional COVID-19 Phone Triaging System and Phone Triage-Driven Deep Learning Model
OBJECTIVES: During the COVID-19 pandemic, a quick and reliable phone-triage system is critical for early care and efficient distribution of hospital resources. The study aimed to assess the accuracy of the traditional phone-triage system and phone triage-driven deep learning model in the prediction...
Autores principales: | , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9310285/ https://www.ncbi.nlm.nih.gov/pubmed/35869692 http://dx.doi.org/10.1177/21501319221113544 |
Sumario: | OBJECTIVES: During the COVID-19 pandemic, a quick and reliable phone-triage system is critical for early care and efficient distribution of hospital resources. The study aimed to assess the accuracy of the traditional phone-triage system and phone triage-driven deep learning model in the prediction of positive COVID-19 patients. SETTING: This is a retrospective study conducted at the family medicine department, Cairo University. METHODS: The study included a dataset of 943 suspected COVID-19 patients from the phone triage during the first wave of the pandemic. The accuracy of the phone triaging system was assessed. PCR-dependent and phone triage-driven deep learning model for automated classifications of natural human responses was conducted. RESULTS: Based on the RT-PCR results, we found that myalgia, fever, and contact with a case with respiratory symptoms had the highest sensitivity among the symptoms/ risk factors that were asked during the phone calls (86.3%, 77.5%, and 75.1%, respectively). While immunodeficiency, smoking, and loss of smell or taste had the highest specificity (96.9%, 83.6%, and 74.0%, respectively). The positive predictive value (PPV) of phone triage was 48.4%. The classification accuracy achieved by the deep learning model was 66%, while the PPV was 70.5%. CONCLUSION: Phone triage and deep learning models are feasible and convenient tools for screening COVID-19 patients. Using the deep learning models for symptoms screening will help to provide the proper medical care as early as possible for those at a higher risk of developing severe illness paving the way for a more efficient allocation of the scanty health resources. |
---|