Cargando…
Deep learning for detecting herbicide weed control spectrum in turfgrass
BACKGROUND: Precision spraying of postemergence herbicides according to the herbicide weed control spectrum can substantially reduce herbicide input. The objective of this research was to evaluate the effectiveness of using deep convolutional neural networks (DCNNs) for detecting and discriminating...
Autores principales: | Jin, Xiaojun, Bagavathiannan, Muthukumar, Maity, Aniruddha, Chen, Yong, Yu, Jialin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9310453/ https://www.ncbi.nlm.nih.gov/pubmed/35879797 http://dx.doi.org/10.1186/s13007-022-00929-4 |
Ejemplares similares
-
Pollen-mediated transfer of herbicide resistance between johnsongrass (Sorghum halepense) biotypes
por: Maity, Aniruddha, et al.
Publicado: (2022) -
History of Herbicide-Resistant Traits in Cotton in the U.S. and the Importance of Integrated Weed Management for Technology Stewardship
por: Vulchi, Rohith, et al.
Publicado: (2022) -
Evaluation of convolutional neural networks for herbicide susceptibility-based weed detection in turf
por: Jin, Xiaojun, et al.
Publicado: (2023) -
Use of synthetic images for training a deep learning model for weed detection and biomass estimation in cotton
por: Sapkota, Bishwa B., et al.
Publicado: (2022) -
Evaluating Cross-Applicability of Weed Detection Models Across Different Crops in Similar Production Environments
por: Sapkota, Bishwa B., et al.
Publicado: (2022)