Cargando…
Prediction of lymphedema occurrence in patients with breast cancer using the optimized combination of ensemble learning algorithm and feature selection
BACKGROUND: Breast cancer-related lymphedema is one of the most important complications that adversely affect patients' quality of life. Lymphedema can be managed if its risk factors are known and can be modified. This study aimed to select an appropriate model to predict the risk of lymphedema...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9310496/ https://www.ncbi.nlm.nih.gov/pubmed/35879760 http://dx.doi.org/10.1186/s12911-022-01937-z |
_version_ | 1784753396832534528 |
---|---|
author | Yaghoobi Notash, Anaram Yaghoobi Notash, Aidin Omidi, Zahra Haghighat, Shahpar |
author_facet | Yaghoobi Notash, Anaram Yaghoobi Notash, Aidin Omidi, Zahra Haghighat, Shahpar |
author_sort | Yaghoobi Notash, Anaram |
collection | PubMed |
description | BACKGROUND: Breast cancer-related lymphedema is one of the most important complications that adversely affect patients' quality of life. Lymphedema can be managed if its risk factors are known and can be modified. This study aimed to select an appropriate model to predict the risk of lymphedema and determine the factors affecting lymphedema. METHOD: This study was conducted on data of 970 breast cancer patients with lymphedema referred to a lymphedema clinic. This study was designed in two phases: developing an appropriate model to predict the risk of lymphedema and identifying the risk factors. The first phase included data preprocessing, optimizing feature selection for each base learner by the Genetic algorithm, optimizing the combined ensemble learning method, and estimating fitness function for evaluating an appropriate model. In the second phase, the influential variables were assessed and introduced based on the average number of variables in the output of the proposed algorithm. RESULT: Once the sensitivity and accuracy of the algorithms were evaluated and compared, the Support Vector Machine algorithm showed the highest sensitivity and was found to be the superior model for predicting lymphedema. Meanwhile, the combined method had an accuracy coefficient of 91%. The extracted significant features in the proposed model were the number of lymph nodes to the number of removed lymph nodes ratio (68%), feeling of heaviness (67%), limited range of motion in the affected limb (65%), the number of the removed lymph nodes ( 64%), receiving radiotherapy (63%), misalignment of the dominant and the involved limb (62%), presence of fibrotic tissue (62%), type of surgery (62%), tingling sensation (62%), the number of the involved lymph nodes (61%), body mass index (61%), the number of chemotherapy sessions (60%), age (58%), limb injury (53%), chemotherapy regimen (53%), and occupation (50%). CONCLUSION: Applying a combination of ensemble learning approach with the selected classification algorithms, feature selection, and optimization by Genetic algorithm, Lymphedema can be predicted with appropriate accuracy. Developing applications by effective variables to determine the risk of lymphedema can help lymphedema clinics choose the proper preventive and therapeutic method. |
format | Online Article Text |
id | pubmed-9310496 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-93104962022-07-26 Prediction of lymphedema occurrence in patients with breast cancer using the optimized combination of ensemble learning algorithm and feature selection Yaghoobi Notash, Anaram Yaghoobi Notash, Aidin Omidi, Zahra Haghighat, Shahpar BMC Med Inform Decis Mak Research BACKGROUND: Breast cancer-related lymphedema is one of the most important complications that adversely affect patients' quality of life. Lymphedema can be managed if its risk factors are known and can be modified. This study aimed to select an appropriate model to predict the risk of lymphedema and determine the factors affecting lymphedema. METHOD: This study was conducted on data of 970 breast cancer patients with lymphedema referred to a lymphedema clinic. This study was designed in two phases: developing an appropriate model to predict the risk of lymphedema and identifying the risk factors. The first phase included data preprocessing, optimizing feature selection for each base learner by the Genetic algorithm, optimizing the combined ensemble learning method, and estimating fitness function for evaluating an appropriate model. In the second phase, the influential variables were assessed and introduced based on the average number of variables in the output of the proposed algorithm. RESULT: Once the sensitivity and accuracy of the algorithms were evaluated and compared, the Support Vector Machine algorithm showed the highest sensitivity and was found to be the superior model for predicting lymphedema. Meanwhile, the combined method had an accuracy coefficient of 91%. The extracted significant features in the proposed model were the number of lymph nodes to the number of removed lymph nodes ratio (68%), feeling of heaviness (67%), limited range of motion in the affected limb (65%), the number of the removed lymph nodes ( 64%), receiving radiotherapy (63%), misalignment of the dominant and the involved limb (62%), presence of fibrotic tissue (62%), type of surgery (62%), tingling sensation (62%), the number of the involved lymph nodes (61%), body mass index (61%), the number of chemotherapy sessions (60%), age (58%), limb injury (53%), chemotherapy regimen (53%), and occupation (50%). CONCLUSION: Applying a combination of ensemble learning approach with the selected classification algorithms, feature selection, and optimization by Genetic algorithm, Lymphedema can be predicted with appropriate accuracy. Developing applications by effective variables to determine the risk of lymphedema can help lymphedema clinics choose the proper preventive and therapeutic method. BioMed Central 2022-07-25 /pmc/articles/PMC9310496/ /pubmed/35879760 http://dx.doi.org/10.1186/s12911-022-01937-z Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Yaghoobi Notash, Anaram Yaghoobi Notash, Aidin Omidi, Zahra Haghighat, Shahpar Prediction of lymphedema occurrence in patients with breast cancer using the optimized combination of ensemble learning algorithm and feature selection |
title | Prediction of lymphedema occurrence in patients with breast cancer using the optimized combination of ensemble learning algorithm and feature selection |
title_full | Prediction of lymphedema occurrence in patients with breast cancer using the optimized combination of ensemble learning algorithm and feature selection |
title_fullStr | Prediction of lymphedema occurrence in patients with breast cancer using the optimized combination of ensemble learning algorithm and feature selection |
title_full_unstemmed | Prediction of lymphedema occurrence in patients with breast cancer using the optimized combination of ensemble learning algorithm and feature selection |
title_short | Prediction of lymphedema occurrence in patients with breast cancer using the optimized combination of ensemble learning algorithm and feature selection |
title_sort | prediction of lymphedema occurrence in patients with breast cancer using the optimized combination of ensemble learning algorithm and feature selection |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9310496/ https://www.ncbi.nlm.nih.gov/pubmed/35879760 http://dx.doi.org/10.1186/s12911-022-01937-z |
work_keys_str_mv | AT yaghoobinotashanaram predictionoflymphedemaoccurrenceinpatientswithbreastcancerusingtheoptimizedcombinationofensemblelearningalgorithmandfeatureselection AT yaghoobinotashaidin predictionoflymphedemaoccurrenceinpatientswithbreastcancerusingtheoptimizedcombinationofensemblelearningalgorithmandfeatureselection AT omidizahra predictionoflymphedemaoccurrenceinpatientswithbreastcancerusingtheoptimizedcombinationofensemblelearningalgorithmandfeatureselection AT haghighatshahpar predictionoflymphedemaoccurrenceinpatientswithbreastcancerusingtheoptimizedcombinationofensemblelearningalgorithmandfeatureselection |