Cargando…
PCfun: a hybrid computational framework for systematic characterization of protein complex function
In molecular biology, it is a general assumption that the ensemble of expressed molecules, their activities and interactions determine biological function, cellular states and phenotypes. Stable protein complexes—or macromolecular machines—are, in turn, the key functional entities mediating and modu...
Autores principales: | Sharma, Varun S, Fossati, Andrea, Ciuffa, Rodolfo, Buljan, Marija, Williams, Evan G, Chen, Zhen, Shao, Wenguang, Pedrioli, Patrick G A, Purcell, Anthony W, Martínez, María Rodríguez, Song, Jiangning, Manica, Matteo, Aebersold, Ruedi, Li, Chen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9310514/ https://www.ncbi.nlm.nih.gov/pubmed/35724564 http://dx.doi.org/10.1093/bib/bbac239 |
Ejemplares similares
-
RBP-TSTL is a two-stage transfer learning framework for genome-scale prediction of RNA-binding proteins
por: Peng, Xinxin, et al.
Publicado: (2022) -
ATTIC is an integrated approach for predicting A-to-I RNA editing sites in three species
por: Chen, Ruyi, et al.
Publicado: (2023) -
CAFU: a Galaxy framework for exploring unmapped RNA-Seq data
por: Chen, Siyuan, et al.
Publicado: (2019) -
ResNetKhib: a novel cell type-specific tool for predicting lysine 2-hydroxyisobutylation sites via transfer learning
por: Jia, Xiaoti, et al.
Publicado: (2023) -
ASPIRER: a new computational approach for identifying non-classical secreted proteins based on deep learning
por: Wang, Xiaoyu, et al.
Publicado: (2022)