Cargando…
Evaluating hierarchical machine learning approaches to classify biological databases
The rate of biological data generation has increased dramatically in recent years, which has driven the importance of databases as a resource to guide innovation and the generation of biological insights. Given the complexity and scale of these databases, automatic data classification is often requi...
Autores principales: | Rezende, Pâmela M, Xavier, Joicymara S, Ascher, David B, Fernandes, Gabriel R, Pires, Douglas E V |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9310517/ https://www.ncbi.nlm.nih.gov/pubmed/35724625 http://dx.doi.org/10.1093/bib/bbac216 |
Ejemplares similares
-
ThermoMutDB: a thermodynamic database for missense mutations
por: Xavier, Joicymara S, et al.
Publicado: (2020) -
A voting-based machine learning approach for classifying biological and clinical datasets
por: Daneshvar, Negar Hossein-Nezhad, et al.
Publicado: (2023) -
Who is calling? Optimizing source identification from marmoset vocalizations with hierarchical machine learning classifiers
por: Phaniraj, Nikhil, et al.
Publicado: (2023) -
Enhancing the Biological Relevance of Machine Learning Classifiers for Reverse Vaccinology
por: Heinson, Ashley I., et al.
Publicado: (2017) -
Prediction of rifampicin resistance beyond the RRDR using structure-based machine learning approaches
por: Portelli, Stephanie, et al.
Publicado: (2020)