Cargando…
A penalized linear mixed model with generalized method of moments for prediction analysis on high-dimensional multi-omics data
With the advances in high-throughput biotechnologies, high-dimensional multi-layer omics data become increasingly available. They can provide both confirmatory and complementary information to disease risk and thus have offered unprecedented opportunities for risk prediction studies. However, the hi...
Autores principales: | Wang, Xiaqiong, Wen, Yalu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9310531/ https://www.ncbi.nlm.nih.gov/pubmed/35649346 http://dx.doi.org/10.1093/bib/bbac193 |
Ejemplares similares
-
UNMF: a unified nonnegative matrix factorization for multi-dimensional omics data
por: Abe, Ko, et al.
Publicado: (2023) -
Computationally scalable regression modeling for ultrahigh-dimensional omics data with ParProx
por: Ko, Seyoon, et al.
Publicado: (2021) -
Multi-omics regulatory network inference in the presence of missing data
por: Henao, Juan D, et al.
Publicado: (2023) -
Integrating multi-omics summary data using a Mendelian randomization framework
por: Jin, Chong, et al.
Publicado: (2022) -
XOmiVAE: an interpretable deep learning model for cancer classification using high-dimensional omics data
por: Withnell, Eloise, et al.
Publicado: (2021)