Cargando…

MOF Synthesis Prediction Enabled by Automatic Data Mining and Machine Learning

Despite rapid progress in the field of metal–organic frameworks (MOFs), the potential of using machine learning (ML) methods to predict MOF synthesis parameters is still untapped. Here, we show how ML can be used for rationalization and acceleration of the MOF discovery process by directly predictin...

Descripción completa

Detalles Bibliográficos
Autores principales: Luo, Yi, Bag, Saientan, Zaremba, Orysia, Cierpka, Adrian, Andreo, Jacopo, Wuttke, Stefan, Friederich, Pascal, Tsotsalas, Manuel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9310626/
https://www.ncbi.nlm.nih.gov/pubmed/35104033
http://dx.doi.org/10.1002/anie.202200242
_version_ 1784753427729874944
author Luo, Yi
Bag, Saientan
Zaremba, Orysia
Cierpka, Adrian
Andreo, Jacopo
Wuttke, Stefan
Friederich, Pascal
Tsotsalas, Manuel
author_facet Luo, Yi
Bag, Saientan
Zaremba, Orysia
Cierpka, Adrian
Andreo, Jacopo
Wuttke, Stefan
Friederich, Pascal
Tsotsalas, Manuel
author_sort Luo, Yi
collection PubMed
description Despite rapid progress in the field of metal–organic frameworks (MOFs), the potential of using machine learning (ML) methods to predict MOF synthesis parameters is still untapped. Here, we show how ML can be used for rationalization and acceleration of the MOF discovery process by directly predicting the synthesis conditions of a MOF based on its crystal structure. Our approach is based on: i) establishing the first MOF synthesis database via automatic extraction of synthesis parameters from the literature, ii) training and optimizing ML models by employing the MOF database, and iii) predicting the synthesis conditions for new MOF structures. The ML models, even at an initial stage, exhibit a good prediction performance, outperforming human expert predictions, obtained through a synthesis survey. The automated synthesis prediction is available via a web‐tool on https://mof‐synthesis.aimat.science.
format Online
Article
Text
id pubmed-9310626
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-93106262022-07-29 MOF Synthesis Prediction Enabled by Automatic Data Mining and Machine Learning Luo, Yi Bag, Saientan Zaremba, Orysia Cierpka, Adrian Andreo, Jacopo Wuttke, Stefan Friederich, Pascal Tsotsalas, Manuel Angew Chem Int Ed Engl Communications Despite rapid progress in the field of metal–organic frameworks (MOFs), the potential of using machine learning (ML) methods to predict MOF synthesis parameters is still untapped. Here, we show how ML can be used for rationalization and acceleration of the MOF discovery process by directly predicting the synthesis conditions of a MOF based on its crystal structure. Our approach is based on: i) establishing the first MOF synthesis database via automatic extraction of synthesis parameters from the literature, ii) training and optimizing ML models by employing the MOF database, and iii) predicting the synthesis conditions for new MOF structures. The ML models, even at an initial stage, exhibit a good prediction performance, outperforming human expert predictions, obtained through a synthesis survey. The automated synthesis prediction is available via a web‐tool on https://mof‐synthesis.aimat.science. John Wiley and Sons Inc. 2022-03-10 2022-05-02 /pmc/articles/PMC9310626/ /pubmed/35104033 http://dx.doi.org/10.1002/anie.202200242 Text en © 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Communications
Luo, Yi
Bag, Saientan
Zaremba, Orysia
Cierpka, Adrian
Andreo, Jacopo
Wuttke, Stefan
Friederich, Pascal
Tsotsalas, Manuel
MOF Synthesis Prediction Enabled by Automatic Data Mining and Machine Learning
title MOF Synthesis Prediction Enabled by Automatic Data Mining and Machine Learning
title_full MOF Synthesis Prediction Enabled by Automatic Data Mining and Machine Learning
title_fullStr MOF Synthesis Prediction Enabled by Automatic Data Mining and Machine Learning
title_full_unstemmed MOF Synthesis Prediction Enabled by Automatic Data Mining and Machine Learning
title_short MOF Synthesis Prediction Enabled by Automatic Data Mining and Machine Learning
title_sort mof synthesis prediction enabled by automatic data mining and machine learning
topic Communications
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9310626/
https://www.ncbi.nlm.nih.gov/pubmed/35104033
http://dx.doi.org/10.1002/anie.202200242
work_keys_str_mv AT luoyi mofsynthesispredictionenabledbyautomaticdataminingandmachinelearning
AT bagsaientan mofsynthesispredictionenabledbyautomaticdataminingandmachinelearning
AT zarembaorysia mofsynthesispredictionenabledbyautomaticdataminingandmachinelearning
AT cierpkaadrian mofsynthesispredictionenabledbyautomaticdataminingandmachinelearning
AT andreojacopo mofsynthesispredictionenabledbyautomaticdataminingandmachinelearning
AT wuttkestefan mofsynthesispredictionenabledbyautomaticdataminingandmachinelearning
AT friederichpascal mofsynthesispredictionenabledbyautomaticdataminingandmachinelearning
AT tsotsalasmanuel mofsynthesispredictionenabledbyautomaticdataminingandmachinelearning