Cargando…
MOF Synthesis Prediction Enabled by Automatic Data Mining and Machine Learning
Despite rapid progress in the field of metal–organic frameworks (MOFs), the potential of using machine learning (ML) methods to predict MOF synthesis parameters is still untapped. Here, we show how ML can be used for rationalization and acceleration of the MOF discovery process by directly predictin...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9310626/ https://www.ncbi.nlm.nih.gov/pubmed/35104033 http://dx.doi.org/10.1002/anie.202200242 |
_version_ | 1784753427729874944 |
---|---|
author | Luo, Yi Bag, Saientan Zaremba, Orysia Cierpka, Adrian Andreo, Jacopo Wuttke, Stefan Friederich, Pascal Tsotsalas, Manuel |
author_facet | Luo, Yi Bag, Saientan Zaremba, Orysia Cierpka, Adrian Andreo, Jacopo Wuttke, Stefan Friederich, Pascal Tsotsalas, Manuel |
author_sort | Luo, Yi |
collection | PubMed |
description | Despite rapid progress in the field of metal–organic frameworks (MOFs), the potential of using machine learning (ML) methods to predict MOF synthesis parameters is still untapped. Here, we show how ML can be used for rationalization and acceleration of the MOF discovery process by directly predicting the synthesis conditions of a MOF based on its crystal structure. Our approach is based on: i) establishing the first MOF synthesis database via automatic extraction of synthesis parameters from the literature, ii) training and optimizing ML models by employing the MOF database, and iii) predicting the synthesis conditions for new MOF structures. The ML models, even at an initial stage, exhibit a good prediction performance, outperforming human expert predictions, obtained through a synthesis survey. The automated synthesis prediction is available via a web‐tool on https://mof‐synthesis.aimat.science. |
format | Online Article Text |
id | pubmed-9310626 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-93106262022-07-29 MOF Synthesis Prediction Enabled by Automatic Data Mining and Machine Learning Luo, Yi Bag, Saientan Zaremba, Orysia Cierpka, Adrian Andreo, Jacopo Wuttke, Stefan Friederich, Pascal Tsotsalas, Manuel Angew Chem Int Ed Engl Communications Despite rapid progress in the field of metal–organic frameworks (MOFs), the potential of using machine learning (ML) methods to predict MOF synthesis parameters is still untapped. Here, we show how ML can be used for rationalization and acceleration of the MOF discovery process by directly predicting the synthesis conditions of a MOF based on its crystal structure. Our approach is based on: i) establishing the first MOF synthesis database via automatic extraction of synthesis parameters from the literature, ii) training and optimizing ML models by employing the MOF database, and iii) predicting the synthesis conditions for new MOF structures. The ML models, even at an initial stage, exhibit a good prediction performance, outperforming human expert predictions, obtained through a synthesis survey. The automated synthesis prediction is available via a web‐tool on https://mof‐synthesis.aimat.science. John Wiley and Sons Inc. 2022-03-10 2022-05-02 /pmc/articles/PMC9310626/ /pubmed/35104033 http://dx.doi.org/10.1002/anie.202200242 Text en © 2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Communications Luo, Yi Bag, Saientan Zaremba, Orysia Cierpka, Adrian Andreo, Jacopo Wuttke, Stefan Friederich, Pascal Tsotsalas, Manuel MOF Synthesis Prediction Enabled by Automatic Data Mining and Machine Learning |
title | MOF Synthesis Prediction Enabled by Automatic Data Mining and Machine Learning
|
title_full | MOF Synthesis Prediction Enabled by Automatic Data Mining and Machine Learning
|
title_fullStr | MOF Synthesis Prediction Enabled by Automatic Data Mining and Machine Learning
|
title_full_unstemmed | MOF Synthesis Prediction Enabled by Automatic Data Mining and Machine Learning
|
title_short | MOF Synthesis Prediction Enabled by Automatic Data Mining and Machine Learning
|
title_sort | mof synthesis prediction enabled by automatic data mining and machine learning |
topic | Communications |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9310626/ https://www.ncbi.nlm.nih.gov/pubmed/35104033 http://dx.doi.org/10.1002/anie.202200242 |
work_keys_str_mv | AT luoyi mofsynthesispredictionenabledbyautomaticdataminingandmachinelearning AT bagsaientan mofsynthesispredictionenabledbyautomaticdataminingandmachinelearning AT zarembaorysia mofsynthesispredictionenabledbyautomaticdataminingandmachinelearning AT cierpkaadrian mofsynthesispredictionenabledbyautomaticdataminingandmachinelearning AT andreojacopo mofsynthesispredictionenabledbyautomaticdataminingandmachinelearning AT wuttkestefan mofsynthesispredictionenabledbyautomaticdataminingandmachinelearning AT friederichpascal mofsynthesispredictionenabledbyautomaticdataminingandmachinelearning AT tsotsalasmanuel mofsynthesispredictionenabledbyautomaticdataminingandmachinelearning |