Cargando…
MOF Synthesis Prediction Enabled by Automatic Data Mining and Machine Learning
Despite rapid progress in the field of metal–organic frameworks (MOFs), the potential of using machine learning (ML) methods to predict MOF synthesis parameters is still untapped. Here, we show how ML can be used for rationalization and acceleration of the MOF discovery process by directly predictin...
Autores principales: | Luo, Yi, Bag, Saientan, Zaremba, Orysia, Cierpka, Adrian, Andreo, Jacopo, Wuttke, Stefan, Friederich, Pascal, Tsotsalas, Manuel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9310626/ https://www.ncbi.nlm.nih.gov/pubmed/35104033 http://dx.doi.org/10.1002/anie.202200242 |
Ejemplares similares
-
Concentration dependent energy levels shifts in donor-acceptor mixtures due to intermolecular electrostatic interaction
por: Bag, Saientan, et al.
Publicado: (2019) -
Alignment
of Breathing Metal–Organic Framework
Particles for Enhanced Water-Driven Actuation
por: Andreo, Jacopo, et al.
Publicado: (2023) -
Synthesis, Transfer, and Gas Separation Characteristics of MOF-Templated Polymer Membranes
por: Schmitt, Sophia, et al.
Publicado: (2019) -
A Machine Learning Approach to Zeolite Synthesis Enabled
by Automatic Literature Data Extraction
por: Jensen, Zach, et al.
Publicado: (2019) -
Automatic discovery of photoisomerization mechanisms with nanosecond machine learning photodynamics simulations
por: Li, Jingbai, et al.
Publicado: (2021)