Cargando…
Lung cancer diagnosis using deep attention‐based multiple instance learning and radiomics
BACKGROUND: Early diagnosis of lung cancer is a key intervention for the treatment of lung cancer in which computer‐aided diagnosis (CAD) can play a crucial role. Most published CAD methods perform lung cancer diagnosis by classifying each lung nodule in isolation. However, this does not reflect cli...
Autores principales: | Chen, Junhua, Zeng, Haiyan, Zhang, Chong, Shi, Zhenwei, Dekker, Andre, Wee, Leonard, Bermejo, Inigo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9310706/ https://www.ncbi.nlm.nih.gov/pubmed/35187667 http://dx.doi.org/10.1002/mp.15539 |
Ejemplares similares
-
Technical Note: Ontology‐guided radiomics analysis workflow (O‐RAW)
por: Shi, Zhenwei, et al.
Publicado: (2019) -
Improving reproducibility and performance of radiomics in low‐dose CT using cycle GANs
por: Chen, Junhua, et al.
Publicado: (2022) -
Development and verification of radiomics framework for computed tomography image segmentation
por: Gu, Jiabing, et al.
Publicado: (2022) -
Multi‐marker quantitative radiomics for mass characterization in dedicated breast CT imaging
por: Caballo, Marco, et al.
Publicado: (2020) -
Differentiation between immune checkpoint inhibitor‐related and radiation pneumonitis in lung cancer by CT radiomics and machine learning
por: Cheng, Jun, et al.
Publicado: (2022)