Cargando…

Delayed B cell repopulation after rituximab treatment in multiple sclerosis patients with expanded adaptive natural killer cells

BACKGROUND AND PURPOSE: The aim was to evaluate whether adaptive NKG2C+ natural killer (NK) cells, characterized by enhanced antibody‐dependent cell cytotoxicity (ADCC), may influence time to B cell repopulation after rituximab treatment in multiple sclerosis (MS) patients. METHODS: This was a prosp...

Descripción completa

Detalles Bibliográficos
Autores principales: Moreira, Antía, Munteis, Elvira, Vera, Andrea, Macías Gómez, Adrián, Bertrán Recasens, Bernat, Rubio Pérez, Miguel Ángel, Llop, Mireia, Martínez‐Rodríguez, Jose E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9310749/
https://www.ncbi.nlm.nih.gov/pubmed/35247022
http://dx.doi.org/10.1111/ene.15312
Descripción
Sumario:BACKGROUND AND PURPOSE: The aim was to evaluate whether adaptive NKG2C+ natural killer (NK) cells, characterized by enhanced antibody‐dependent cell cytotoxicity (ADCC), may influence time to B cell repopulation after rituximab treatment in multiple sclerosis (MS) patients. METHODS: This was a prospective observational study of MS patients treated with rituximab monitoring peripheral B cells for repeated doses. B cell repopulation was defined as CD19+ cells above 2% of total lymphocytes, classifying cases according to the median time of B cell repopulation as early or late (≤9 months, >9 months, respectively). Basal NK cell immunophenotype and in vitro ADCC responses induced by rituximab were assessed by flow cytometry. RESULTS: B cell repopulation in 38 patients (24 relapsing–remitting MS [RRMS]; 14 progressive MS) was classified as early (≤9 months, n = 19) or late (>9 months, n = 19). RRMS patients with late B cell repopulation had higher proportions of NKG2C+ NK cells compared to those with early repopulation (24.7% ± 16.2% vs. 11.3% ± 10.4%, p < 0.05), and a direct correlation between time to B cell repopulation and percentage of NKG2C+ NK cells (R 0.45, p < 0.05) was observed. RRMS cases with late repopulation compared with early repopulation had a higher secretion of tumor necrosis factor α and interferon γ by NK cells after rituximab‐dependent NK cell activation. The NK cell immunophenotype appeared unrelated to B cell repopulation in progressive MS patients. CONCLUSIONS: Adaptive NKG2C+ NK cells in RRMS may be associated with delayed B cell repopulation after rituximab, a finding probably related to enhanced depletion of B cells exerted by NK‐cell‐mediated ADCC, pointing to the use of personalized regimens with anti‐CD20 monoclonal antibody therapy in some patients.