Cargando…
Robust automated radiation therapy treatment planning using scenario‐specific dose prediction and robust dose mimicking
PURPOSE: We present a framework for robust automated treatment planning using machine learning, comprising scenario‐specific dose prediction and robust dose mimicking. METHODS: The scenario dose prediction pipeline is divided into the prediction of nominal dose from input image and the prediction of...
Autores principales: | Eriksson, Oskar, Zhang, Tianfang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9310773/ https://www.ncbi.nlm.nih.gov/pubmed/35305023 http://dx.doi.org/10.1002/mp.15622 |
Ejemplares similares
-
Assessment of a diaphragm override strategy for robustly optimized proton therapy planning for esophageal cancer patients
por: Visser, Sabine, et al.
Publicado: (2021) -
A feasibility study on an automated method to generate patient‐specific dose distributions for radiotherapy using deep learning
por: Chen, Xinyuan, et al.
Publicado: (2018) -
Direct incorporation of patient‐specific efficacy and toxicity estimates in radiation therapy plan optimization
por: Polan, Daniel F, et al.
Publicado: (2022) -
HDR prostate brachytherapy plan robustness and its effect on in‐vivo source tracking error thresholds: A multi‐institutional study
por: Poder, Joel, et al.
Publicado: (2022) -
Properties of the anisotropy of dose contributions: A planning study on prostate cases
por: Greber, Johannes, et al.
Publicado: (2018)