Cargando…
Artificial intelligence to classify ear disease from otoscopy: A systematic review and meta‐analysis
OBJECTIVES: To summarise the accuracy of artificial intelligence (AI) computer vision algorithms to classify ear disease from otoscopy. DESIGN: Systematic review and meta‐analysis. METHODS: Using the PRISMA guidelines, nine online databases were searched for articles that used AI computer vision alg...
Autores principales: | Habib, Al‐Rahim, Kajbafzadeh, Majid, Hasan, Zubair, Wong, Eugene, Gunasekera, Hasantha, Perry, Chris, Sacks, Raymond, Kumar, Ashnil, Singh, Narinder |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9310803/ https://www.ncbi.nlm.nih.gov/pubmed/35253378 http://dx.doi.org/10.1111/coa.13925 |
Ejemplares similares
-
The effect and acceptability of tympanometry and pneumatic otoscopy in general practitioner diagnosis and management of childhood ear disease
por: Abbott, Penelope, et al.
Publicado: (2014) -
Evaluating the generalizability of deep learning image classification algorithms to detect middle ear disease using otoscopy
por: Habib, Al-Rahim, et al.
Publicado: (2023) -
A Computer Vision Algorithm to Classify Pneumatization of the Mastoid Process on Temporal Bone Computed Tomography Scans
por: Hasan, Zubair, et al.
Publicado: (2023) -
Systematic review with meta‐analysis: artificial intelligence in the diagnosis of oesophageal diseases
por: Visaggi, Pierfrancesco, et al.
Publicado: (2022) -
Real-World Performance of the Afirma Genomic Sequencing Classifier (GSC)—A Meta-analysis
por: Nasr, Christian E, et al.
Publicado: (2022)