Cargando…
Attention-augmented U-Net (AA-U-Net) for semantic segmentation
Deep learning-based image segmentation models rely strongly on capturing sufficient spatial context without requiring complex models that are hard to train with limited labeled data. For COVID-19 infection segmentation on CT images, training data are currently scarce. Attention models, in particular...
Autores principales: | Rajamani, Kumar T., Rani, Priya, Siebert, Hanna, ElagiriRamalingam, Rajkumar, Heinrich, Mattias P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9311338/ https://www.ncbi.nlm.nih.gov/pubmed/35910403 http://dx.doi.org/10.1007/s11760-022-02302-3 |
Ejemplares similares
-
Dynamic deformable attention network (DDANet) for COVID-19 lesions semantic segmentation
por: Rajamani, Kumar T., et al.
Publicado: (2021) -
Multi-U-Net: Residual Module under Multisensory Field and Attention Mechanism Based Optimized U-Net for VHR Image Semantic Segmentation
por: Ran, Si, et al.
Publicado: (2021) -
Feature Pyramid U-Net with Attention for Semantic Segmentation of Forward-Looking Sonar Images
por: Zhao, Dongdong, et al.
Publicado: (2022) -
SCAU-Net: Spatial-Channel Attention U-Net for Gland Segmentation
por: Zhao, Peng, et al.
Publicado: (2020) -
APU-Net: An Attention Mechanism Parallel U-Net for Lung Tumor Segmentation
por: Zhou, Tao, et al.
Publicado: (2022)