Cargando…
Divide-and-Attention Network for HE-Stained Pathological Image Classification
SIMPLE SUMMARY: We propose a Divide-and-Attention network that can learn representative pathological image features with respect to different tissue structures and adaptively focus on the most important ones. In addition, we introduce deep canonical correlation analysis constraints in the feature fu...
Autores principales: | Yan, Rui, Yang, Zhidong, Li, Jintao, Zheng, Chunhou, Zhang, Fa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9311575/ https://www.ncbi.nlm.nih.gov/pubmed/36101363 http://dx.doi.org/10.3390/biology11070982 |
Ejemplares similares
-
Nuclei-Guided Network for Breast Cancer Grading in HE-Stained Pathological Images †
por: Yan, Rui, et al.
Publicado: (2022) -
Richer fusion network for breast cancer classification based on multimodal data
por: Yan, Rui, et al.
Publicado: (2021) -
Segmentation of HE-stained meningioma pathological images based on pseudo-labels
por: Wu, Chongshu, et al.
Publicado: (2022) -
Normalization of HE-stained histological images using cycle consistent generative adversarial networks
por: Runz, Marlen, et al.
Publicado: (2021) -
Multi-Scale Attention Convolutional Network for Masson Stained Bile Duct Segmentation from Liver Pathology Images
por: Su, Chun-Han, et al.
Publicado: (2022)