Cargando…
Deep-Sea Sediments from the Southern Gulf of Mexico Harbor a Wide Diversity of PKS I Genes
The excessive use of antibiotics has triggered the appearance of new resistant strains, which is why great interest has been taken in the search for new bioactive compounds capable of overcoming this emergency in recent years. Massive sequencing tools have enabled the detection of new microorganisms...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9311598/ https://www.ncbi.nlm.nih.gov/pubmed/35884142 http://dx.doi.org/10.3390/antibiotics11070887 |
_version_ | 1784753631989334016 |
---|---|
author | Fernández-López, Maikel Sánchez-Reyes, Ayixon Barcelos, Clara Sidón-Ceseña, Karla Leite, Ricardo B. Lago-Lestón, Asunción |
author_facet | Fernández-López, Maikel Sánchez-Reyes, Ayixon Barcelos, Clara Sidón-Ceseña, Karla Leite, Ricardo B. Lago-Lestón, Asunción |
author_sort | Fernández-López, Maikel |
collection | PubMed |
description | The excessive use of antibiotics has triggered the appearance of new resistant strains, which is why great interest has been taken in the search for new bioactive compounds capable of overcoming this emergency in recent years. Massive sequencing tools have enabled the detection of new microorganisms that cannot be cultured in a laboratory, thus opening the door to the search for new biosynthetic genes. The great variety in oceanic environments in terms of pressure, salinity, temperature, and nutrients enables marine microorganisms to develop unique biochemical and physiological properties for their survival, enhancing the production of secondary metabolites that can vary from those produced by terrestrial microorganisms. We performed a search for type I PKS genes in metagenomes obtained from the marine sediments of the deep waters of the Gulf of Mexico using Hidden Markov Models. More than 2000 candidate genes were detected in the metagenomes that code for type I PKS domains, while biosynthetic pathways that may code for other secondary metabolites were also detected. Our research demonstrates the great potential use of the marine sediments of the Gulf of Mexico for identifying genes that code for new secondary metabolites. |
format | Online Article Text |
id | pubmed-9311598 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93115982022-07-26 Deep-Sea Sediments from the Southern Gulf of Mexico Harbor a Wide Diversity of PKS I Genes Fernández-López, Maikel Sánchez-Reyes, Ayixon Barcelos, Clara Sidón-Ceseña, Karla Leite, Ricardo B. Lago-Lestón, Asunción Antibiotics (Basel) Article The excessive use of antibiotics has triggered the appearance of new resistant strains, which is why great interest has been taken in the search for new bioactive compounds capable of overcoming this emergency in recent years. Massive sequencing tools have enabled the detection of new microorganisms that cannot be cultured in a laboratory, thus opening the door to the search for new biosynthetic genes. The great variety in oceanic environments in terms of pressure, salinity, temperature, and nutrients enables marine microorganisms to develop unique biochemical and physiological properties for their survival, enhancing the production of secondary metabolites that can vary from those produced by terrestrial microorganisms. We performed a search for type I PKS genes in metagenomes obtained from the marine sediments of the deep waters of the Gulf of Mexico using Hidden Markov Models. More than 2000 candidate genes were detected in the metagenomes that code for type I PKS domains, while biosynthetic pathways that may code for other secondary metabolites were also detected. Our research demonstrates the great potential use of the marine sediments of the Gulf of Mexico for identifying genes that code for new secondary metabolites. MDPI 2022-07-04 /pmc/articles/PMC9311598/ /pubmed/35884142 http://dx.doi.org/10.3390/antibiotics11070887 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Fernández-López, Maikel Sánchez-Reyes, Ayixon Barcelos, Clara Sidón-Ceseña, Karla Leite, Ricardo B. Lago-Lestón, Asunción Deep-Sea Sediments from the Southern Gulf of Mexico Harbor a Wide Diversity of PKS I Genes |
title | Deep-Sea Sediments from the Southern Gulf of Mexico Harbor a Wide Diversity of PKS I Genes |
title_full | Deep-Sea Sediments from the Southern Gulf of Mexico Harbor a Wide Diversity of PKS I Genes |
title_fullStr | Deep-Sea Sediments from the Southern Gulf of Mexico Harbor a Wide Diversity of PKS I Genes |
title_full_unstemmed | Deep-Sea Sediments from the Southern Gulf of Mexico Harbor a Wide Diversity of PKS I Genes |
title_short | Deep-Sea Sediments from the Southern Gulf of Mexico Harbor a Wide Diversity of PKS I Genes |
title_sort | deep-sea sediments from the southern gulf of mexico harbor a wide diversity of pks i genes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9311598/ https://www.ncbi.nlm.nih.gov/pubmed/35884142 http://dx.doi.org/10.3390/antibiotics11070887 |
work_keys_str_mv | AT fernandezlopezmaikel deepseasedimentsfromthesoutherngulfofmexicoharborawidediversityofpksigenes AT sanchezreyesayixon deepseasedimentsfromthesoutherngulfofmexicoharborawidediversityofpksigenes AT barcelosclara deepseasedimentsfromthesoutherngulfofmexicoharborawidediversityofpksigenes AT sidoncesenakarla deepseasedimentsfromthesoutherngulfofmexicoharborawidediversityofpksigenes AT leitericardob deepseasedimentsfromthesoutherngulfofmexicoharborawidediversityofpksigenes AT lagolestonasuncion deepseasedimentsfromthesoutherngulfofmexicoharborawidediversityofpksigenes |