Cargando…

Rhodomyrtus tomentosa Fruits in Two Ripening Stages: Chemical Compositions, Antioxidant Capacity and Digestive Enzymes Inhibitory Activity

Rhodomyrtus tomentosa fruit (RTF) has been known as a food source with multiple health-care components. In this work, nutrition characteristics, free and bound phenolic profiles, antioxidant properties in vitro and digestive enzymes inhibitory activities of un-fully mature RTF (UM-RTF) and fully mat...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Xiaoping, Chen, Yuting, Dai, Jincheng, Yao, Linling, Wang, Lu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9311718/
https://www.ncbi.nlm.nih.gov/pubmed/35883880
http://dx.doi.org/10.3390/antiox11071390
Descripción
Sumario:Rhodomyrtus tomentosa fruit (RTF) has been known as a food source with multiple health-care components. In this work, nutrition characteristics, free and bound phenolic profiles, antioxidant properties in vitro and digestive enzymes inhibitory activities of un-fully mature RTF (UM-RTF) and fully mature RTF (FM-RTF) were evaluated for the first time. Results verified that high levels of energy, ascorbic acid, organic acids and total phenolics were observed in FM-RTF. Moreover, FM-RTF had significant higher total phenolic content (TPC), but significantly lower total flavonoid content (TFC) than UM-RTF. In addition, twenty phenolic compounds in RTF were identified by high performance liquid chromatography–electrospray ionization–quadrupole time-of-flight tandem mass spectrometry (HPLC-ESI-qTOF-MS/MS) method. Quantitative analysis results indicated that gallic acid, ellagic acid and astragalin were the predominant free phenolics, while gallic acid and syringetin-3-O-glucoside were dominant in bound phenolic fractions. In contrast, higher contents of phenolics were observed in FM-RTF. The results also confirmed that FM-RTF exhibited higher antioxidant activities and digestive enzymes inhibitory activities than UM-RTF. Strong inhibitory ability on α-glucosidase was found in RTF, while bound phenolics showed a stronger α-amylase inhibitory effect than free phenolics. Moreover, the interaction between the main phenolic compounds and α-glucosidase/α-amylase was preliminary explored by molecular docking analysis. The results provided valuable data about the chemical compositions and biological potential of R. tomentosa fruits in both maturation stages studied.