Cargando…
Neural network dose prediction for rectal spacer stratification in dose‐escalated prostate radiotherapy
PURPOSE: To develop a knowledge‐based decision‐support system capable of stratifying patients for rectal spacer (RS) insertion based on neural network predicted rectal dose, reducing the need for time‐ and resource‐intensive radiotherapy (RT) planning. METHODS: Forty‐four patients treated for prosta...
Autores principales: | Thomas, Christopher, Dregely, Isabel, Oksuz, Ilkay, Guerrero Urbano, Teresa, Greener, Tony, King, Andrew P., Barrington, Sally F. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9311720/ https://www.ncbi.nlm.nih.gov/pubmed/35218024 http://dx.doi.org/10.1002/mp.15575 |
Ejemplares similares
-
Experimental investigation of dynamic real‐time rotation‐including dose reconstruction during prostate tracking radiotherapy
por: Muurholm, Casper Gammelmark, et al.
Publicado: (2022) -
A feasibility study on an automated method to generate patient‐specific dose distributions for radiotherapy using deep learning
por: Chen, Xinyuan, et al.
Publicado: (2018) -
An extended dose–volume model in high dose‐rate brachytherapy – Using mean‐tail‐dose to reduce tumor underdosage
por: Morén, Björn, et al.
Publicado: (2019) -
Robust automated radiation therapy treatment planning using scenario‐specific dose prediction and robust dose mimicking
por: Eriksson, Oskar, et al.
Publicado: (2022) -
Properties of the anisotropy of dose contributions: A planning study on prostate cases
por: Greber, Johannes, et al.
Publicado: (2018)