Cargando…
Hierarchical spectral clustering reveals brain size and shape changes in asymptomatic carriers of C9orf72
Traditional methods for detecting asymptomatic brain changes in neurodegenerative diseases such as Alzheimer’s disease or frontotemporal degeneration typically evaluate changes in volume at a predefined level of granularity, e.g. voxel-wise or in a priori defined cortical volumes of interest. Here,...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9311825/ https://www.ncbi.nlm.nih.gov/pubmed/35898720 http://dx.doi.org/10.1093/braincomms/fcac182 |
_version_ | 1784753688641798144 |
---|---|
author | Bruffaerts, Rose Gors, Dorothy Bárcenas Gallardo, Alicia Vandenbulcke, Mathieu Van Damme, Philip Suetens, Paul van Swieten, John C Borroni, Barbara Sanchez-Valle, Raquel Moreno, Fermin Laforce, Robert Graff, Caroline Synofzik, Matthis Galimberti, Daniela Rowe, James B Masellis, Mario Tartaglia, Maria Carmela Finger, Elizabeth de Mendonça, Alexandre Tagliavini, Fabrizio Butler, Chris R Santana, Isabel Gerhard, Alexander Ducharme, Simon Levin, Johannes Danek, Adrian Otto, Markus Rohrer, Jonathan D Dupont, Patrick Claes, Peter Vandenberghe, Rik |
author_facet | Bruffaerts, Rose Gors, Dorothy Bárcenas Gallardo, Alicia Vandenbulcke, Mathieu Van Damme, Philip Suetens, Paul van Swieten, John C Borroni, Barbara Sanchez-Valle, Raquel Moreno, Fermin Laforce, Robert Graff, Caroline Synofzik, Matthis Galimberti, Daniela Rowe, James B Masellis, Mario Tartaglia, Maria Carmela Finger, Elizabeth de Mendonça, Alexandre Tagliavini, Fabrizio Butler, Chris R Santana, Isabel Gerhard, Alexander Ducharme, Simon Levin, Johannes Danek, Adrian Otto, Markus Rohrer, Jonathan D Dupont, Patrick Claes, Peter Vandenberghe, Rik |
author_sort | Bruffaerts, Rose |
collection | PubMed |
description | Traditional methods for detecting asymptomatic brain changes in neurodegenerative diseases such as Alzheimer’s disease or frontotemporal degeneration typically evaluate changes in volume at a predefined level of granularity, e.g. voxel-wise or in a priori defined cortical volumes of interest. Here, we apply a method based on hierarchical spectral clustering, a graph-based partitioning technique. Our method uses multiple levels of segmentation for detecting changes in a data-driven, unbiased, comprehensive manner within a standard statistical framework. Furthermore, spectral clustering allows for detection of changes in shape along with changes in size. We performed tensor-based morphometry to detect changes in the Genetic Frontotemporal dementia Initiative asymptomatic and symptomatic frontotemporal degeneration mutation carriers using hierarchical spectral clustering and compared the outcome to that obtained with a more conventional voxel-wise tensor- and voxel-based morphometric analysis. In the symptomatic groups, the hierarchical spectral clustering-based method yielded results that were largely in line with those obtained with the voxel-wise approach. In asymptomatic C9orf72 expansion carriers, spectral clustering detected changes in size in medial temporal cortex that voxel-wise methods could only detect in the symptomatic phase. Furthermore, in the asymptomatic and the symptomatic phases, the spectral clustering approach detected changes in shape in the premotor cortex in C9orf72. In summary, the present study shows the merit of hierarchical spectral clustering for data-driven segmentation and detection of structural changes in the symptomatic and asymptomatic stages of monogenic frontotemporal degeneration. |
format | Online Article Text |
id | pubmed-9311825 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-93118252022-07-26 Hierarchical spectral clustering reveals brain size and shape changes in asymptomatic carriers of C9orf72 Bruffaerts, Rose Gors, Dorothy Bárcenas Gallardo, Alicia Vandenbulcke, Mathieu Van Damme, Philip Suetens, Paul van Swieten, John C Borroni, Barbara Sanchez-Valle, Raquel Moreno, Fermin Laforce, Robert Graff, Caroline Synofzik, Matthis Galimberti, Daniela Rowe, James B Masellis, Mario Tartaglia, Maria Carmela Finger, Elizabeth de Mendonça, Alexandre Tagliavini, Fabrizio Butler, Chris R Santana, Isabel Gerhard, Alexander Ducharme, Simon Levin, Johannes Danek, Adrian Otto, Markus Rohrer, Jonathan D Dupont, Patrick Claes, Peter Vandenberghe, Rik Brain Commun Original Article Traditional methods for detecting asymptomatic brain changes in neurodegenerative diseases such as Alzheimer’s disease or frontotemporal degeneration typically evaluate changes in volume at a predefined level of granularity, e.g. voxel-wise or in a priori defined cortical volumes of interest. Here, we apply a method based on hierarchical spectral clustering, a graph-based partitioning technique. Our method uses multiple levels of segmentation for detecting changes in a data-driven, unbiased, comprehensive manner within a standard statistical framework. Furthermore, spectral clustering allows for detection of changes in shape along with changes in size. We performed tensor-based morphometry to detect changes in the Genetic Frontotemporal dementia Initiative asymptomatic and symptomatic frontotemporal degeneration mutation carriers using hierarchical spectral clustering and compared the outcome to that obtained with a more conventional voxel-wise tensor- and voxel-based morphometric analysis. In the symptomatic groups, the hierarchical spectral clustering-based method yielded results that were largely in line with those obtained with the voxel-wise approach. In asymptomatic C9orf72 expansion carriers, spectral clustering detected changes in size in medial temporal cortex that voxel-wise methods could only detect in the symptomatic phase. Furthermore, in the asymptomatic and the symptomatic phases, the spectral clustering approach detected changes in shape in the premotor cortex in C9orf72. In summary, the present study shows the merit of hierarchical spectral clustering for data-driven segmentation and detection of structural changes in the symptomatic and asymptomatic stages of monogenic frontotemporal degeneration. Oxford University Press 2022-07-18 /pmc/articles/PMC9311825/ /pubmed/35898720 http://dx.doi.org/10.1093/braincomms/fcac182 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of the Guarantors of Brain. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Bruffaerts, Rose Gors, Dorothy Bárcenas Gallardo, Alicia Vandenbulcke, Mathieu Van Damme, Philip Suetens, Paul van Swieten, John C Borroni, Barbara Sanchez-Valle, Raquel Moreno, Fermin Laforce, Robert Graff, Caroline Synofzik, Matthis Galimberti, Daniela Rowe, James B Masellis, Mario Tartaglia, Maria Carmela Finger, Elizabeth de Mendonça, Alexandre Tagliavini, Fabrizio Butler, Chris R Santana, Isabel Gerhard, Alexander Ducharme, Simon Levin, Johannes Danek, Adrian Otto, Markus Rohrer, Jonathan D Dupont, Patrick Claes, Peter Vandenberghe, Rik Hierarchical spectral clustering reveals brain size and shape changes in asymptomatic carriers of C9orf72 |
title | Hierarchical spectral clustering reveals brain size and shape changes in asymptomatic carriers of C9orf72 |
title_full | Hierarchical spectral clustering reveals brain size and shape changes in asymptomatic carriers of C9orf72 |
title_fullStr | Hierarchical spectral clustering reveals brain size and shape changes in asymptomatic carriers of C9orf72 |
title_full_unstemmed | Hierarchical spectral clustering reveals brain size and shape changes in asymptomatic carriers of C9orf72 |
title_short | Hierarchical spectral clustering reveals brain size and shape changes in asymptomatic carriers of C9orf72 |
title_sort | hierarchical spectral clustering reveals brain size and shape changes in asymptomatic carriers of c9orf72 |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9311825/ https://www.ncbi.nlm.nih.gov/pubmed/35898720 http://dx.doi.org/10.1093/braincomms/fcac182 |
work_keys_str_mv | AT bruffaertsrose hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72 AT gorsdorothy hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72 AT barcenasgallardoalicia hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72 AT vandenbulckemathieu hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72 AT vandammephilip hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72 AT suetenspaul hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72 AT vanswietenjohnc hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72 AT borronibarbara hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72 AT sanchezvalleraquel hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72 AT morenofermin hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72 AT laforcerobert hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72 AT graffcaroline hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72 AT synofzikmatthis hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72 AT galimbertidaniela hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72 AT rowejamesb hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72 AT masellismario hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72 AT tartagliamariacarmela hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72 AT fingerelizabeth hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72 AT demendoncaalexandre hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72 AT tagliavinifabrizio hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72 AT butlerchrisr hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72 AT santanaisabel hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72 AT gerhardalexander hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72 AT ducharmesimon hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72 AT levinjohannes hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72 AT danekadrian hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72 AT ottomarkus hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72 AT rohrerjonathand hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72 AT dupontpatrick hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72 AT claespeter hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72 AT vandenbergherik hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72 AT hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72 |