Cargando…

Hierarchical spectral clustering reveals brain size and shape changes in asymptomatic carriers of C9orf72

Traditional methods for detecting asymptomatic brain changes in neurodegenerative diseases such as Alzheimer’s disease or frontotemporal degeneration typically evaluate changes in volume at a predefined level of granularity, e.g. voxel-wise or in a priori defined cortical volumes of interest. Here,...

Descripción completa

Detalles Bibliográficos
Autores principales: Bruffaerts, Rose, Gors, Dorothy, Bárcenas Gallardo, Alicia, Vandenbulcke, Mathieu, Van Damme, Philip, Suetens, Paul, van Swieten, John C, Borroni, Barbara, Sanchez-Valle, Raquel, Moreno, Fermin, Laforce, Robert, Graff, Caroline, Synofzik, Matthis, Galimberti, Daniela, Rowe, James B, Masellis, Mario, Tartaglia, Maria Carmela, Finger, Elizabeth, de Mendonça, Alexandre, Tagliavini, Fabrizio, Butler, Chris R, Santana, Isabel, Gerhard, Alexander, Ducharme, Simon, Levin, Johannes, Danek, Adrian, Otto, Markus, Rohrer, Jonathan D, Dupont, Patrick, Claes, Peter, Vandenberghe, Rik
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9311825/
https://www.ncbi.nlm.nih.gov/pubmed/35898720
http://dx.doi.org/10.1093/braincomms/fcac182
_version_ 1784753688641798144
author Bruffaerts, Rose
Gors, Dorothy
Bárcenas Gallardo, Alicia
Vandenbulcke, Mathieu
Van Damme, Philip
Suetens, Paul
van Swieten, John C
Borroni, Barbara
Sanchez-Valle, Raquel
Moreno, Fermin
Laforce, Robert
Graff, Caroline
Synofzik, Matthis
Galimberti, Daniela
Rowe, James B
Masellis, Mario
Tartaglia, Maria Carmela
Finger, Elizabeth
de Mendonça, Alexandre
Tagliavini, Fabrizio
Butler, Chris R
Santana, Isabel
Gerhard, Alexander
Ducharme, Simon
Levin, Johannes
Danek, Adrian
Otto, Markus
Rohrer, Jonathan D
Dupont, Patrick
Claes, Peter
Vandenberghe, Rik
author_facet Bruffaerts, Rose
Gors, Dorothy
Bárcenas Gallardo, Alicia
Vandenbulcke, Mathieu
Van Damme, Philip
Suetens, Paul
van Swieten, John C
Borroni, Barbara
Sanchez-Valle, Raquel
Moreno, Fermin
Laforce, Robert
Graff, Caroline
Synofzik, Matthis
Galimberti, Daniela
Rowe, James B
Masellis, Mario
Tartaglia, Maria Carmela
Finger, Elizabeth
de Mendonça, Alexandre
Tagliavini, Fabrizio
Butler, Chris R
Santana, Isabel
Gerhard, Alexander
Ducharme, Simon
Levin, Johannes
Danek, Adrian
Otto, Markus
Rohrer, Jonathan D
Dupont, Patrick
Claes, Peter
Vandenberghe, Rik
author_sort Bruffaerts, Rose
collection PubMed
description Traditional methods for detecting asymptomatic brain changes in neurodegenerative diseases such as Alzheimer’s disease or frontotemporal degeneration typically evaluate changes in volume at a predefined level of granularity, e.g. voxel-wise or in a priori defined cortical volumes of interest. Here, we apply a method based on hierarchical spectral clustering, a graph-based partitioning technique. Our method uses multiple levels of segmentation for detecting changes in a data-driven, unbiased, comprehensive manner within a standard statistical framework. Furthermore, spectral clustering allows for detection of changes in shape along with changes in size. We performed tensor-based morphometry to detect changes in the Genetic Frontotemporal dementia Initiative asymptomatic and symptomatic frontotemporal degeneration mutation carriers using hierarchical spectral clustering and compared the outcome to that obtained with a more conventional voxel-wise tensor- and voxel-based morphometric analysis. In the symptomatic groups, the hierarchical spectral clustering-based method yielded results that were largely in line with those obtained with the voxel-wise approach. In asymptomatic C9orf72 expansion carriers, spectral clustering detected changes in size in medial temporal cortex that voxel-wise methods could only detect in the symptomatic phase. Furthermore, in the asymptomatic and the symptomatic phases, the spectral clustering approach detected changes in shape in the premotor cortex in C9orf72. In summary, the present study shows the merit of hierarchical spectral clustering for data-driven segmentation and detection of structural changes in the symptomatic and asymptomatic stages of monogenic frontotemporal degeneration.
format Online
Article
Text
id pubmed-9311825
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-93118252022-07-26 Hierarchical spectral clustering reveals brain size and shape changes in asymptomatic carriers of C9orf72 Bruffaerts, Rose Gors, Dorothy Bárcenas Gallardo, Alicia Vandenbulcke, Mathieu Van Damme, Philip Suetens, Paul van Swieten, John C Borroni, Barbara Sanchez-Valle, Raquel Moreno, Fermin Laforce, Robert Graff, Caroline Synofzik, Matthis Galimberti, Daniela Rowe, James B Masellis, Mario Tartaglia, Maria Carmela Finger, Elizabeth de Mendonça, Alexandre Tagliavini, Fabrizio Butler, Chris R Santana, Isabel Gerhard, Alexander Ducharme, Simon Levin, Johannes Danek, Adrian Otto, Markus Rohrer, Jonathan D Dupont, Patrick Claes, Peter Vandenberghe, Rik Brain Commun Original Article Traditional methods for detecting asymptomatic brain changes in neurodegenerative diseases such as Alzheimer’s disease or frontotemporal degeneration typically evaluate changes in volume at a predefined level of granularity, e.g. voxel-wise or in a priori defined cortical volumes of interest. Here, we apply a method based on hierarchical spectral clustering, a graph-based partitioning technique. Our method uses multiple levels of segmentation for detecting changes in a data-driven, unbiased, comprehensive manner within a standard statistical framework. Furthermore, spectral clustering allows for detection of changes in shape along with changes in size. We performed tensor-based morphometry to detect changes in the Genetic Frontotemporal dementia Initiative asymptomatic and symptomatic frontotemporal degeneration mutation carriers using hierarchical spectral clustering and compared the outcome to that obtained with a more conventional voxel-wise tensor- and voxel-based morphometric analysis. In the symptomatic groups, the hierarchical spectral clustering-based method yielded results that were largely in line with those obtained with the voxel-wise approach. In asymptomatic C9orf72 expansion carriers, spectral clustering detected changes in size in medial temporal cortex that voxel-wise methods could only detect in the symptomatic phase. Furthermore, in the asymptomatic and the symptomatic phases, the spectral clustering approach detected changes in shape in the premotor cortex in C9orf72. In summary, the present study shows the merit of hierarchical spectral clustering for data-driven segmentation and detection of structural changes in the symptomatic and asymptomatic stages of monogenic frontotemporal degeneration. Oxford University Press 2022-07-18 /pmc/articles/PMC9311825/ /pubmed/35898720 http://dx.doi.org/10.1093/braincomms/fcac182 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of the Guarantors of Brain. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Article
Bruffaerts, Rose
Gors, Dorothy
Bárcenas Gallardo, Alicia
Vandenbulcke, Mathieu
Van Damme, Philip
Suetens, Paul
van Swieten, John C
Borroni, Barbara
Sanchez-Valle, Raquel
Moreno, Fermin
Laforce, Robert
Graff, Caroline
Synofzik, Matthis
Galimberti, Daniela
Rowe, James B
Masellis, Mario
Tartaglia, Maria Carmela
Finger, Elizabeth
de Mendonça, Alexandre
Tagliavini, Fabrizio
Butler, Chris R
Santana, Isabel
Gerhard, Alexander
Ducharme, Simon
Levin, Johannes
Danek, Adrian
Otto, Markus
Rohrer, Jonathan D
Dupont, Patrick
Claes, Peter
Vandenberghe, Rik
Hierarchical spectral clustering reveals brain size and shape changes in asymptomatic carriers of C9orf72
title Hierarchical spectral clustering reveals brain size and shape changes in asymptomatic carriers of C9orf72
title_full Hierarchical spectral clustering reveals brain size and shape changes in asymptomatic carriers of C9orf72
title_fullStr Hierarchical spectral clustering reveals brain size and shape changes in asymptomatic carriers of C9orf72
title_full_unstemmed Hierarchical spectral clustering reveals brain size and shape changes in asymptomatic carriers of C9orf72
title_short Hierarchical spectral clustering reveals brain size and shape changes in asymptomatic carriers of C9orf72
title_sort hierarchical spectral clustering reveals brain size and shape changes in asymptomatic carriers of c9orf72
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9311825/
https://www.ncbi.nlm.nih.gov/pubmed/35898720
http://dx.doi.org/10.1093/braincomms/fcac182
work_keys_str_mv AT bruffaertsrose hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72
AT gorsdorothy hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72
AT barcenasgallardoalicia hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72
AT vandenbulckemathieu hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72
AT vandammephilip hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72
AT suetenspaul hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72
AT vanswietenjohnc hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72
AT borronibarbara hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72
AT sanchezvalleraquel hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72
AT morenofermin hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72
AT laforcerobert hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72
AT graffcaroline hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72
AT synofzikmatthis hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72
AT galimbertidaniela hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72
AT rowejamesb hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72
AT masellismario hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72
AT tartagliamariacarmela hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72
AT fingerelizabeth hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72
AT demendoncaalexandre hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72
AT tagliavinifabrizio hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72
AT butlerchrisr hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72
AT santanaisabel hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72
AT gerhardalexander hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72
AT ducharmesimon hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72
AT levinjohannes hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72
AT danekadrian hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72
AT ottomarkus hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72
AT rohrerjonathand hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72
AT dupontpatrick hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72
AT claespeter hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72
AT vandenbergherik hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72
AT hierarchicalspectralclusteringrevealsbrainsizeandshapechangesinasymptomaticcarriersofc9orf72