Cargando…
Cold Argon Athmospheric Plasma for Biomedicine: Biological Effects, Applications and Possibilities
Currently, plasma medicine is a synthetic direction that unites the efforts of specialists of various profiles. For the successful formation of plasma medicine, it is necessary to solve a large complex of problems, including creating equipment for generating cold plasma, revealing the biological eff...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9311881/ https://www.ncbi.nlm.nih.gov/pubmed/35883753 http://dx.doi.org/10.3390/antiox11071262 |
_version_ | 1784753702453641216 |
---|---|
author | Martusevich, Andrew K. Surovegina, Alexandra V. Bocharin, Ivan V. Nazarov, Vladimir V. Minenko, Inessa A. Artamonov, Mikhail Yu. |
author_facet | Martusevich, Andrew K. Surovegina, Alexandra V. Bocharin, Ivan V. Nazarov, Vladimir V. Minenko, Inessa A. Artamonov, Mikhail Yu. |
author_sort | Martusevich, Andrew K. |
collection | PubMed |
description | Currently, plasma medicine is a synthetic direction that unites the efforts of specialists of various profiles. For the successful formation of plasma medicine, it is necessary to solve a large complex of problems, including creating equipment for generating cold plasma, revealing the biological effects of this effect, as well as identifying and justifying the most promising areas of its application. It is known that these biological effects include antibacterial and antiviral activity, the ability to stimulate hemocoagulation, pro-regenerative properties, etc. The possibility of using the factor in tissue engineering and implantology is also shown. Based on this, the purpose of this review was to form a unified understanding of the biological effects and biomedical applications of argon cold plasma. The review shows that cold plasma, like any other physical and chemical factors, has dose dependence, and the variable parameter in this case is the exposure of its application. One of the significant characteristics determining the specificity of the cold plasma effect is the carrier gas selection. This gas carrier is not just an ionized medium but modulates the response of biosystems to it. Finally, the perception of cold plasma by cellular structures can be carried out by activating a special molecular biosensor, the functioning of which significantly depends on the parameters of the medium (in the field of plasma generation and the cell itself). Further research in this area can open up new prospects for the effective use of cold plasma. |
format | Online Article Text |
id | pubmed-9311881 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93118812022-07-26 Cold Argon Athmospheric Plasma for Biomedicine: Biological Effects, Applications and Possibilities Martusevich, Andrew K. Surovegina, Alexandra V. Bocharin, Ivan V. Nazarov, Vladimir V. Minenko, Inessa A. Artamonov, Mikhail Yu. Antioxidants (Basel) Review Currently, plasma medicine is a synthetic direction that unites the efforts of specialists of various profiles. For the successful formation of plasma medicine, it is necessary to solve a large complex of problems, including creating equipment for generating cold plasma, revealing the biological effects of this effect, as well as identifying and justifying the most promising areas of its application. It is known that these biological effects include antibacterial and antiviral activity, the ability to stimulate hemocoagulation, pro-regenerative properties, etc. The possibility of using the factor in tissue engineering and implantology is also shown. Based on this, the purpose of this review was to form a unified understanding of the biological effects and biomedical applications of argon cold plasma. The review shows that cold plasma, like any other physical and chemical factors, has dose dependence, and the variable parameter in this case is the exposure of its application. One of the significant characteristics determining the specificity of the cold plasma effect is the carrier gas selection. This gas carrier is not just an ionized medium but modulates the response of biosystems to it. Finally, the perception of cold plasma by cellular structures can be carried out by activating a special molecular biosensor, the functioning of which significantly depends on the parameters of the medium (in the field of plasma generation and the cell itself). Further research in this area can open up new prospects for the effective use of cold plasma. MDPI 2022-06-27 /pmc/articles/PMC9311881/ /pubmed/35883753 http://dx.doi.org/10.3390/antiox11071262 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Martusevich, Andrew K. Surovegina, Alexandra V. Bocharin, Ivan V. Nazarov, Vladimir V. Minenko, Inessa A. Artamonov, Mikhail Yu. Cold Argon Athmospheric Plasma for Biomedicine: Biological Effects, Applications and Possibilities |
title | Cold Argon Athmospheric Plasma for Biomedicine: Biological Effects, Applications and Possibilities |
title_full | Cold Argon Athmospheric Plasma for Biomedicine: Biological Effects, Applications and Possibilities |
title_fullStr | Cold Argon Athmospheric Plasma for Biomedicine: Biological Effects, Applications and Possibilities |
title_full_unstemmed | Cold Argon Athmospheric Plasma for Biomedicine: Biological Effects, Applications and Possibilities |
title_short | Cold Argon Athmospheric Plasma for Biomedicine: Biological Effects, Applications and Possibilities |
title_sort | cold argon athmospheric plasma for biomedicine: biological effects, applications and possibilities |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9311881/ https://www.ncbi.nlm.nih.gov/pubmed/35883753 http://dx.doi.org/10.3390/antiox11071262 |
work_keys_str_mv | AT martusevichandrewk coldargonathmosphericplasmaforbiomedicinebiologicaleffectsapplicationsandpossibilities AT suroveginaalexandrav coldargonathmosphericplasmaforbiomedicinebiologicaleffectsapplicationsandpossibilities AT bocharinivanv coldargonathmosphericplasmaforbiomedicinebiologicaleffectsapplicationsandpossibilities AT nazarovvladimirv coldargonathmosphericplasmaforbiomedicinebiologicaleffectsapplicationsandpossibilities AT minenkoinessaa coldargonathmosphericplasmaforbiomedicinebiologicaleffectsapplicationsandpossibilities AT artamonovmikhailyu coldargonathmosphericplasmaforbiomedicinebiologicaleffectsapplicationsandpossibilities |