Cargando…
Emerging Computational Approaches for Antimicrobial Peptide Discovery
In the last two decades many reports have addressed the application of artificial intelligence (AI) in the search and design of antimicrobial peptides (AMPs). AI has been represented by machine learning (ML) algorithms that use sequence-based features for the discovery of new peptidic scaffolds with...
Autores principales: | Agüero-Chapin, Guillermin, Galpert-Cañizares, Deborah, Domínguez-Pérez, Dany, Marrero-Ponce, Yovani, Pérez-Machado, Gisselle, Teijeira, Marta, Antunes, Agostinho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9311958/ https://www.ncbi.nlm.nih.gov/pubmed/35884190 http://dx.doi.org/10.3390/antibiotics11070936 |
Ejemplares similares
-
A 2022 Update on Computational Approaches to the Discovery and Design of Antimicrobial Peptides
por: Agüero-Chapin, Guillermin, et al.
Publicado: (2023) -
Complex Networks Analyses of Antibiofilm Peptides: An Emerging Tool for Next-Generation Antimicrobials’ Discovery
por: Agüero-Chapin, Guillermin, et al.
Publicado: (2023) -
A Novel Network Science and Similarity-Searching-Based Approach for Discovering Potential Tumor-Homing Peptides from Antimicrobials
por: Romero, Maylin, et al.
Publicado: (2022) -
Graph Theory-Based Sequence Descriptors as Remote Homology Predictors
por: Agüero-Chapin, Guillermin, et al.
Publicado: (2019) -
Network Science
and Group Fusion Similarity-Based
Searching to Explore the Chemical Space of Antiparasitic Peptides
por: Ayala-Ruano, Sebastián, et al.
Publicado: (2022)