Cargando…

Nisin Mutant Prevention Concentration and the Role of Subinhibitory Concentrations on Resistance Development by Diabetic Foot Staphylococci

The most prevalent microorganism in diabetic foot infections (DFI) is Staphylococcus aureus, an important multidrug-resistant pathogen. The antimicrobial peptide nisin is a promising compound for DFI treatment, being effective against S. aureus. However, to avoid the selection of resistant mutants,...

Descripción completa

Detalles Bibliográficos
Autores principales: Costa, Margarida, Meirinhos, Cláudia, Cunha, Eva, Gomes, Diana, Pereira, Marcelo, Dias, Ricardo, Tavares, Luís, Oliveira, Manuela
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9311964/
https://www.ncbi.nlm.nih.gov/pubmed/35884226
http://dx.doi.org/10.3390/antibiotics11070972
Descripción
Sumario:The most prevalent microorganism in diabetic foot infections (DFI) is Staphylococcus aureus, an important multidrug-resistant pathogen. The antimicrobial peptide nisin is a promising compound for DFI treatment, being effective against S. aureus. However, to avoid the selection of resistant mutants, correct drug therapeutic doses must be established, being also important to understand if nisin subinhibitory concentrations (subMIC) can potentiate resistant genes transfer between clinical isolates or mutations in genes associated with nisin resistance. The mutant selection window (MSW) of nisin was determined for 23 DFI S. aureus isolates; a protocol aiming to prompt vanA horizontal transfer between enterococci to clinical S. aureus was performed; and nisin subMIC effect on resistance evolution was assessed through whole-genome sequencing (WGS) applied to isolates subjected to a MEGA-plate assay. MSW ranged from 5–360 μg/mL for two isolates, from 5–540 μg/mL for three isolates, and from 5–720 μg/mL for one isolate. In the presence of nisin subMIC values, no transconjugants were obtained, indicating that nisin does not seem to promote vanA transfer. Finally, WGS analysis showed that incubation in the presence of nisin subMIC did not promote the occurrence of significant mutations in genes related to nisin resistance, supporting nisin application to DFI treatment.