Cargando…
Elastodontic Devices in Orthodontics: An In-Vitro Study on Mechanical Deformation under Loading
The purpose of the present study was to evaluate the mechanical resistance of elastodontic devices (ED): their maximum compression loads and plastic deformation under loading (percentage). An Instron universal machine (Model 3365, Instron, Industrial Product Group, Grove City, PA, USA) was employed...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9312014/ https://www.ncbi.nlm.nih.gov/pubmed/35877333 http://dx.doi.org/10.3390/bioengineering9070282 |
Sumario: | The purpose of the present study was to evaluate the mechanical resistance of elastodontic devices (ED): their maximum compression loads and plastic deformation under loading (percentage). An Instron universal machine (Model 3365, Instron, Industrial Product Group, Grove City, PA, USA) was employed with a 100 N load cell and with Bluehill software for loading analyses. Each device was submitted to a five-cycles test. The following ED were evaluated: A.M.C.O.P. (Micerium, Genova, Italy) in red color, in orange color, and in blue color; HealthyStart (Ortho-Tain, Winnetka, IL, USA), and T4K™ phase 1 (Myofunctional Research Co., Helensvale, Australia). During the five-cycles test, the Ortho-Tain device delivered the greatest compression load (7.56 N), with the lowest percentage of deformation (0.95%). For all devices, a slight plastic deformation of the material was registered, ranging from 0.95% to 1.75%. For the T4K device it was not possible to complete the five-cycles test. For all the analyzed ED, a slight plastic deformation under loading was registered, that in all cases can be considered clinically acceptable. Further studies are needed to test the appliances after clinical usage. |
---|