Cargando…

The First Genome Survey and De Novo Assembly of the Short Mackerel (Rastrelliger brachysoma) and Indian Mackerel (Rastrelliger kanagurta)

SIMPLE SUMMARY: Mackerel species are commercially important marine species in Southeast Asia, especially short mackerel and Indian mackerel. However, genomic information about them is still limited. Genome survey of these two mackerel species was reported in this study. Next-generation sequencing an...

Descripción completa

Detalles Bibliográficos
Autores principales: Surachat, Komwit, Narkthewan, Patcharaporn, Thotsagotphairee, Chayanin, Wonglapsuwan, Monwadee, Thongpradub, Walaiporn
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9312166/
https://www.ncbi.nlm.nih.gov/pubmed/35883316
http://dx.doi.org/10.3390/ani12141769
Descripción
Sumario:SIMPLE SUMMARY: Mackerel species are commercially important marine species in Southeast Asia, especially short mackerel and Indian mackerel. However, genomic information about them is still limited. Genome survey of these two mackerel species was reported in this study. Next-generation sequencing and comprehensive bioinformatics were performed to obtain the genetic information. The estimated genome size of both species is around 680 Mbp. The heterozygosity of these species was very similar, while the repeat content for Indian mackerel was slightly higher than for short mackerel. Functional annotation also was reported in this study. This is the first reported genome survey and assembly of species in the genus Rastrelliger and could be useful for future comparative genomic studies. ABSTRACT: Rastrelliger brachysoma (short mackerel) and Rastrelliger kanagurta (Indian mackerel) are commercially important marine species in Southeast Asia. In recent years, numbers of these two species have been decreasing in the wild, and genomic information about them is still limited. We conducted a genome survey of these two mackerel species to acquire essential genomic information using next-generation sequencing data. To obtain this genetic information, comprehensive bioinformatics analyses were performed, including de novo assembly, gene prediction, functional annotation, and phylogenetic analysis. The estimated genome sizes were around 680.14 Mbp (R. brachysoma) and 688.82 Mbp (R. kanagurta). The heterozygosity of these species was very similar (≈0.81), while the repeat content for R. kanagurta (9.30%) was slightly higher than for R. brachysoma (8.30%). Functional annotation indicated that most of the genes predicted in these two species shared very close average amino acid identities (94.06%). The phylogenetic analysis revealed close phylogenetic relationships between these two species and other scombrids. This is the first reported genome survey and assembly of species in the genus Rastrelliger and could be useful for future comparative genomic studies.