Cargando…
Detecting Drug–Target Interactions with Feature Similarity Fusion and Molecular Graphs
SIMPLE SUMMARY: Accurate identification of potential targets for drugs to interact with can accelerate drug development. The identification of drug–target interactions can provide insights into hidden drug efficacy. This paper presents a prediction model based on feature similarity fusion that can i...
Autores principales: | Lin, Xiaoli, Xu, Shuai, Liu, Xuan, Zhang, Xiaolong, Hu, Jing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9312204/ https://www.ncbi.nlm.nih.gov/pubmed/36101348 http://dx.doi.org/10.3390/biology11070967 |
Ejemplares similares
-
DTiGEMS+: drug–target interaction prediction using graph embedding, graph mining, and similarity-based techniques
por: Thafar, Maha A., et al.
Publicado: (2020) -
Detecting drug-drug interactions using artificial neural networks and classic graph similarity measures
por: Shtar, Guy, et al.
Publicado: (2019) -
Multi-type feature fusion based on graph neural network for drug-drug interaction prediction
por: He, Changxiang, et al.
Publicado: (2022) -
Nonlinear data fusion over Entity–Relation graphs for Drug–Target Interaction prediction
por: Mazzone, Eugenio, et al.
Publicado: (2023) -
Heterogeneous graph inference based on similarity network fusion for predicting lncRNA–miRNA interaction
por: Fan, Yongxian, et al.
Publicado: (2020)