Cargando…
Emerging Evidence of the Significance of Thioredoxin-1 in Hematopoietic Stem Cell Aging
The United States is undergoing a demographic shift towards an older population with profound economic, social, and healthcare implications. The number of Americans aged 65 and older will reach 80 million by 2040. The shift will be even more dramatic in the extremes of age, with a projected 400% inc...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9312246/ https://www.ncbi.nlm.nih.gov/pubmed/35883782 http://dx.doi.org/10.3390/antiox11071291 |
Sumario: | The United States is undergoing a demographic shift towards an older population with profound economic, social, and healthcare implications. The number of Americans aged 65 and older will reach 80 million by 2040. The shift will be even more dramatic in the extremes of age, with a projected 400% increase in the population over 85 years old in the next two decades. Understanding the molecular and cellular mechanisms of ageing is crucial to reduce ageing-associated disease and to improve the quality of life for the elderly. In this review, we summarized the changes associated with the ageing of hematopoietic stem cells (HSCs) and what is known about some of the key underlying cellular and molecular pathways. We focus here on the effects of reactive oxygen species and the thioredoxin redox homeostasis system on ageing biology in HSCs and the HSC microenvironment. We present additional data from our lab demonstrating the key role of thioredoxin-1 in regulating HSC ageing. |
---|