Cargando…

Oxidative Stress Can Be Attenuated by 4-PBA Caused by High-Fat or Ammonia Nitrogen in Cultured Spotted Seabass: The Mechanism Is Related to Endoplasmic Reticulum Stress

Oxidative stress is a common phenomenon in aquaculture, which can be induced by nutritional or environmental factors. Generally, oxidative stress causes poor growth performance, metabolic dysregulation, and even the death of aquatic animals. To identify a nutritional intervention strategy, high-fat...

Descripción completa

Detalles Bibliográficos
Autores principales: Dong, Yanzou, Li, Lei, Xia, Tian, Wang, Lina, Xiao, Liping, Ding, Nengshui, Wu, Youlin, Lu, Kangle
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9312264/
https://www.ncbi.nlm.nih.gov/pubmed/35883767
http://dx.doi.org/10.3390/antiox11071276
Descripción
Sumario:Oxidative stress is a common phenomenon in aquaculture, which can be induced by nutritional or environmental factors. Generally, oxidative stress causes poor growth performance, metabolic dysregulation, and even the death of aquatic animals. To identify a nutritional intervention strategy, high-fat diet (HFD) feeding (Experiment I) and acute ammonia nitrogen challenge (Experiment II) tests were carried out. In Experiment I, HFD feeding significantly decreased the growth performance concomitantly with excessive fat deposition in the liver and abdomen. The addition of 4-PBA in the diet improved the excessive fat accumulation. The activities of antioxidative enzymes were suppressed, and the levels of lipid and protein peroxidation were increased, indicating that HFD feeding induced oxidative stress. The endoplasmic reticulum stress (ERs) related genes were downregulated in the HFD group. Under a transmission electron microscope (TEM), more swollen and dilated ER lumen could be observed. These results indicated that the HFD induced ERs activation. Although 4-PBA acted as a potent ERs inhibitor, as evidenced by the alleviated alterations of ERs molecules and the ER ultrastructure, the oxidative stress was also attenuated by 4-PBA. In Experiment II, dietary 4-PBA improved the tolerance to the acute ammonia nitrogen challenge, as lower mortality and serum aminotransferase activity was found. Further results showed that 4-PBA decreased the peroxidation content and attenuated ERs, thus confirming the correlation between oxidative stress and ERs. Our findings showed that dietary 4-PBA supplementation can attenuate oxidative stress induced by a HFD or acute ammonia challenge; the mechanism is related to its potent inhibition effect for ERs.