Cargando…
Regulation of Neural Circuitry under General Anesthesia: New Methods and Findings
General anesthesia has been widely utilized since the 1840s, but its underlying neural circuits remain to be completely understood. Since both general anesthesia and sleep are reversible losses of consciousness, studies on the neural-circuit mechanisms affected by general anesthesia have mainly focu...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9312763/ https://www.ncbi.nlm.nih.gov/pubmed/35883456 http://dx.doi.org/10.3390/biom12070898 |
_version_ | 1784753912911233024 |
---|---|
author | Zhang, Kai Pan, Jiacheng Yu, Yonghao |
author_facet | Zhang, Kai Pan, Jiacheng Yu, Yonghao |
author_sort | Zhang, Kai |
collection | PubMed |
description | General anesthesia has been widely utilized since the 1840s, but its underlying neural circuits remain to be completely understood. Since both general anesthesia and sleep are reversible losses of consciousness, studies on the neural-circuit mechanisms affected by general anesthesia have mainly focused on the neural nuclei or the pathways known to regulate sleep. Three advanced technologies commonly used in neuroscience, in vivo calcium imaging, chemogenetics, and optogenetics, are used to record and modulate the activity of specific neurons or neural circuits in the brain areas of interest. Recently, they have successfully been used to study the neural nuclei and pathways of general anesthesia. This article reviews these three techniques and their applications in the brain nuclei or pathways affected by general anesthesia, to serve as a reference for further and more accurate exploration of other neural circuits under general anesthesia and to contribute to other research fields in the future. |
format | Online Article Text |
id | pubmed-9312763 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93127632022-07-26 Regulation of Neural Circuitry under General Anesthesia: New Methods and Findings Zhang, Kai Pan, Jiacheng Yu, Yonghao Biomolecules Review General anesthesia has been widely utilized since the 1840s, but its underlying neural circuits remain to be completely understood. Since both general anesthesia and sleep are reversible losses of consciousness, studies on the neural-circuit mechanisms affected by general anesthesia have mainly focused on the neural nuclei or the pathways known to regulate sleep. Three advanced technologies commonly used in neuroscience, in vivo calcium imaging, chemogenetics, and optogenetics, are used to record and modulate the activity of specific neurons or neural circuits in the brain areas of interest. Recently, they have successfully been used to study the neural nuclei and pathways of general anesthesia. This article reviews these three techniques and their applications in the brain nuclei or pathways affected by general anesthesia, to serve as a reference for further and more accurate exploration of other neural circuits under general anesthesia and to contribute to other research fields in the future. MDPI 2022-06-28 /pmc/articles/PMC9312763/ /pubmed/35883456 http://dx.doi.org/10.3390/biom12070898 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Zhang, Kai Pan, Jiacheng Yu, Yonghao Regulation of Neural Circuitry under General Anesthesia: New Methods and Findings |
title | Regulation of Neural Circuitry under General Anesthesia: New Methods and Findings |
title_full | Regulation of Neural Circuitry under General Anesthesia: New Methods and Findings |
title_fullStr | Regulation of Neural Circuitry under General Anesthesia: New Methods and Findings |
title_full_unstemmed | Regulation of Neural Circuitry under General Anesthesia: New Methods and Findings |
title_short | Regulation of Neural Circuitry under General Anesthesia: New Methods and Findings |
title_sort | regulation of neural circuitry under general anesthesia: new methods and findings |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9312763/ https://www.ncbi.nlm.nih.gov/pubmed/35883456 http://dx.doi.org/10.3390/biom12070898 |
work_keys_str_mv | AT zhangkai regulationofneuralcircuitryundergeneralanesthesianewmethodsandfindings AT panjiacheng regulationofneuralcircuitryundergeneralanesthesianewmethodsandfindings AT yuyonghao regulationofneuralcircuitryundergeneralanesthesianewmethodsandfindings |