Cargando…
APTES-Modified Remote Self-Assembled DNA-Based Electrochemical Biosensor for Human Papillomavirus DNA Detection
High-risk human papillomavirus (HPV) infection is an important cause of cervical cancer formation; therefore, being able to detect high-risk HPV (e.g., HPV-16) is important for the early treatment and prevention of cervical cancer. In this study, a combination of a 3-aminopropyltriethoxysilane (APTE...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9312881/ https://www.ncbi.nlm.nih.gov/pubmed/35884252 http://dx.doi.org/10.3390/bios12070449 |
Sumario: | High-risk human papillomavirus (HPV) infection is an important cause of cervical cancer formation; therefore, being able to detect high-risk HPV (e.g., HPV-16) is important for the early treatment and prevention of cervical cancer. In this study, a combination of a 3-aminopropyltriethoxysilane (APTES) modified gold electrode and a super sandwich structure was creatively developed, resulting in the development of a biosensor that is both sensitive and stable for the detection of HPV-16. The electrochemical biosensor possesses a lower detection limit compared with previous studies with an LOD of 5.475 × 10(−16) mol/L and it possesses a wide linear range from 1.0 × 10(−13) mol/L to 1.0 × 10(−6) mol/L (R(2) = 0.9923) for the target DNA. The experimental data show that the sensor has good stability, and there is no significant decrease in the current response value after 7 days in the low-temperature environment. In addition, the sensor proved to be a powerful clinical tool for disease diagnosis because it showed good interference resistance in complex human serum samples. |
---|