Cargando…
Machine Learning Characterization of Ictal and Interictal States in EEG Aimed at Automated Seizure Detection
Background: The development of automated seizure detection methods using EEG signals could be of great importance for the diagnosis and the monitoring of patients with epilepsy. These methods are often patient-specific and require high accuracy in detecting seizures but also very low false-positive...
Autores principales: | Zazzaro, Gaetano, Pavone, Luigi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9312966/ https://www.ncbi.nlm.nih.gov/pubmed/35884796 http://dx.doi.org/10.3390/biomedicines10071491 |
Ejemplares similares
-
Ictal and interictal EEG findings in
children with migraine
por: Pisani, Francesco, et al.
Publicado: (2004) -
Congruence and Discrepancy of Interictal and Ictal EEG With MRI Lesions in Pediatric Epilepsies
por: Rémi, Jan, et al.
Publicado: (2020) -
A Deep Learning Ensemble Approach for Automated COVID-19 Detection from Chest CT Images
por: Zazzaro, Gaetano, et al.
Publicado: (2021) -
Morphological Description of Frontal EEG Interictal and Ictal Discharges in an Adult Cohort of 175 Patients
por: García-López, Beatriz, et al.
Publicado: (2021) -
Epileptic seizure prediction based on EEG spikes detection of ictal-preictal states
por: Slimen, Itaf Ben, et al.
Publicado: (2020)