Cargando…
Silencing VDAC1 to Treat Mesothelioma Cancer: Tumor Reprograming and Altering Tumor Hallmarks
Mesothelioma, an aggressive cancer with a poor prognosis, is linked to asbestos exposure. However, carbon nanotubes found in materials we are exposed to daily can cause mesothelioma cancer. Cancer cells reprogram their metabolism to support increased biosynthetic and energy demands required for thei...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9312978/ https://www.ncbi.nlm.nih.gov/pubmed/35883451 http://dx.doi.org/10.3390/biom12070895 |
_version_ | 1784753965956595712 |
---|---|
author | Pandey, Swaroop Kumar Machlof-Cohen, Renen Santhanam, Manikandan Shteinfer-Kuzmine, Anna Shoshan-Barmatz, Varda |
author_facet | Pandey, Swaroop Kumar Machlof-Cohen, Renen Santhanam, Manikandan Shteinfer-Kuzmine, Anna Shoshan-Barmatz, Varda |
author_sort | Pandey, Swaroop Kumar |
collection | PubMed |
description | Mesothelioma, an aggressive cancer with a poor prognosis, is linked to asbestos exposure. However, carbon nanotubes found in materials we are exposed to daily can cause mesothelioma cancer. Cancer cells reprogram their metabolism to support increased biosynthetic and energy demands required for their growth and motility. Here, we examined the effects of silencing the expression of the voltage-dependent anion channel 1 (VDAC1), controlling the metabolic and energetic crosstalk between mitochondria and the rest of the cell. We demonstrate that VDAC1 is overexpressed in mesothelioma patients; its levels increase with disease stage and are associated with low survival rates. Silencing VDAC1 expression using a specific siRNA identifying both mouse and human VDAC1 (si-m/hVDAC1-B) inhibits cell proliferation of mesothelioma cancer cells. Treatment of xenografts of human-derived H226 cells or mouse-derived AB1 cells with si-m/hVDAC1-B inhibited tumor growth and caused metabolism reprogramming, as reflected in the decreased expression of metabolism-related proteins, including glycolytic and tricarboxylic acid (-)cycle enzymes and the ATP-synthesizing enzyme. In addition, tumors depleted of VDAC1 showed altered microenvironments and inflammation, both associated with cancer progression. Finally, tumor VDAC1 silencing also eliminated cancer stem cells and induced cell differentiation to normal-like cells. The results show that silencing VDAC1 expression leads to reprogrammed metabolism and to multiple effects from tumor growth inhibition to modulation of the tumor microenvironment and inflammation, inducing differentiation of malignant cells. Thus, silencing VDAC1 is a potential therapeutic approach to treating mesothelioma. |
format | Online Article Text |
id | pubmed-9312978 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93129782022-07-26 Silencing VDAC1 to Treat Mesothelioma Cancer: Tumor Reprograming and Altering Tumor Hallmarks Pandey, Swaroop Kumar Machlof-Cohen, Renen Santhanam, Manikandan Shteinfer-Kuzmine, Anna Shoshan-Barmatz, Varda Biomolecules Article Mesothelioma, an aggressive cancer with a poor prognosis, is linked to asbestos exposure. However, carbon nanotubes found in materials we are exposed to daily can cause mesothelioma cancer. Cancer cells reprogram their metabolism to support increased biosynthetic and energy demands required for their growth and motility. Here, we examined the effects of silencing the expression of the voltage-dependent anion channel 1 (VDAC1), controlling the metabolic and energetic crosstalk between mitochondria and the rest of the cell. We demonstrate that VDAC1 is overexpressed in mesothelioma patients; its levels increase with disease stage and are associated with low survival rates. Silencing VDAC1 expression using a specific siRNA identifying both mouse and human VDAC1 (si-m/hVDAC1-B) inhibits cell proliferation of mesothelioma cancer cells. Treatment of xenografts of human-derived H226 cells or mouse-derived AB1 cells with si-m/hVDAC1-B inhibited tumor growth and caused metabolism reprogramming, as reflected in the decreased expression of metabolism-related proteins, including glycolytic and tricarboxylic acid (-)cycle enzymes and the ATP-synthesizing enzyme. In addition, tumors depleted of VDAC1 showed altered microenvironments and inflammation, both associated with cancer progression. Finally, tumor VDAC1 silencing also eliminated cancer stem cells and induced cell differentiation to normal-like cells. The results show that silencing VDAC1 expression leads to reprogrammed metabolism and to multiple effects from tumor growth inhibition to modulation of the tumor microenvironment and inflammation, inducing differentiation of malignant cells. Thus, silencing VDAC1 is a potential therapeutic approach to treating mesothelioma. MDPI 2022-06-27 /pmc/articles/PMC9312978/ /pubmed/35883451 http://dx.doi.org/10.3390/biom12070895 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Pandey, Swaroop Kumar Machlof-Cohen, Renen Santhanam, Manikandan Shteinfer-Kuzmine, Anna Shoshan-Barmatz, Varda Silencing VDAC1 to Treat Mesothelioma Cancer: Tumor Reprograming and Altering Tumor Hallmarks |
title | Silencing VDAC1 to Treat Mesothelioma Cancer: Tumor Reprograming and Altering Tumor Hallmarks |
title_full | Silencing VDAC1 to Treat Mesothelioma Cancer: Tumor Reprograming and Altering Tumor Hallmarks |
title_fullStr | Silencing VDAC1 to Treat Mesothelioma Cancer: Tumor Reprograming and Altering Tumor Hallmarks |
title_full_unstemmed | Silencing VDAC1 to Treat Mesothelioma Cancer: Tumor Reprograming and Altering Tumor Hallmarks |
title_short | Silencing VDAC1 to Treat Mesothelioma Cancer: Tumor Reprograming and Altering Tumor Hallmarks |
title_sort | silencing vdac1 to treat mesothelioma cancer: tumor reprograming and altering tumor hallmarks |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9312978/ https://www.ncbi.nlm.nih.gov/pubmed/35883451 http://dx.doi.org/10.3390/biom12070895 |
work_keys_str_mv | AT pandeyswaroopkumar silencingvdac1totreatmesotheliomacancertumorreprogramingandalteringtumorhallmarks AT machlofcohenrenen silencingvdac1totreatmesotheliomacancertumorreprogramingandalteringtumorhallmarks AT santhanammanikandan silencingvdac1totreatmesotheliomacancertumorreprogramingandalteringtumorhallmarks AT shteinferkuzmineanna silencingvdac1totreatmesotheliomacancertumorreprogramingandalteringtumorhallmarks AT shoshanbarmatzvarda silencingvdac1totreatmesotheliomacancertumorreprogramingandalteringtumorhallmarks |