Cargando…

What Makes GPCRs from Different Families Bind to the Same Ligand?

G protein-coupled receptors (GPCRs) are the largest class of cell-surface receptor proteins with important functions in signal transduction and often serve as therapeutic drug targets. With the rapidly growing public data on three dimensional (3D) structures of GPCRs and GPCR-ligand interactions, co...

Descripción completa

Detalles Bibliográficos
Autores principales: Dankwah, Kwabena Owusu, Mohl, Jonathon E., Begum, Khodeza, Leung, Ming-Ying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9313020/
https://www.ncbi.nlm.nih.gov/pubmed/35883418
http://dx.doi.org/10.3390/biom12070863
Descripción
Sumario:G protein-coupled receptors (GPCRs) are the largest class of cell-surface receptor proteins with important functions in signal transduction and often serve as therapeutic drug targets. With the rapidly growing public data on three dimensional (3D) structures of GPCRs and GPCR-ligand interactions, computational prediction of GPCR ligand binding becomes a convincing option to high throughput screening and other experimental approaches during the beginning phases of ligand discovery. In this work, we set out to computationally uncover and understand the binding of a single ligand to GPCRs from several different families. Three-dimensional structural comparisons of the GPCRs that bind to the same ligand revealed local 3D structural similarities and often these regions overlap with locations of binding pockets. These pockets were found to be similar (based on backbone geometry and side-chain orientation using APoc), and they correlate positively with electrostatic properties of the pockets. Moreover, the more similar the pockets, the more likely a ligand binding to the pockets will interact with similar residues, have similar conformations, and produce similar binding affinities across the pockets. These findings can be exploited to improve protein function inference, drug repurposing and drug toxicity prediction, and accelerate the development of new drugs.