Cargando…
A Depression Diagnosis Method Based on the Hybrid Neural Network and Attention Mechanism
Depression is a common but easily misdiagnosed disease when using a self-assessment scale. Electroencephalograms (EEGs) provide an important reference and objective basis for the identification and diagnosis of depression. In order to improve the accuracy of the diagnosis of depression by using main...
Autores principales: | Wang, Zhuozheng, Ma, Zhuo, Liu, Wei, An, Zhefeng, Huang, Fubiao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9313113/ https://www.ncbi.nlm.nih.gov/pubmed/35884641 http://dx.doi.org/10.3390/brainsci12070834 |
Ejemplares similares
-
A Novel Fault Diagnosis Approach for Chillers Based on 1-D Convolutional Neural Network and Gated Recurrent Unit
por: Wang, Zhuozheng, et al.
Publicado: (2020) -
A Depression Prediction Algorithm Based on Spatiotemporal Feature of EEG Signal
por: Liu, Wei, et al.
Publicado: (2022) -
Hybrid convolution neural network with channel attention mechanism for sensor-based human activity recognition
por: Mekruksavanich, Sakorn, et al.
Publicado: (2023) -
A facial depression recognition method based on hybrid multi-head cross attention network
por: Li, Yutong, et al.
Publicado: (2023) -
Text Summarization Method Based on Gated Attention Graph Neural Network
por: Huang, Jingui, et al.
Publicado: (2023)