Cargando…
Exploring Orientation Invariant Heuristic Features with Variant Window Length of 1D-CNN-LSTM in Human Activity Recognition
Many studies have explored divergent deep neural networks in human activity recognition (HAR) using a single accelerometer sensor. Multiple types of deep neural networks, such as convolutional neural networks (CNN), long short-term memory (LSTM), or their hybridization (CNN-LSTM), have been implemen...
Autores principales: | Barua, Arnab, Fuller, Daniel, Musa, Sumayyah, Jiang, Xianta |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9313140/ https://www.ncbi.nlm.nih.gov/pubmed/35884354 http://dx.doi.org/10.3390/bios12070549 |
Ejemplares similares
-
CNN-Bi-LSTM: A Complex Environment-Oriented Cattle Behavior Classification Network Based on the Fusion of CNN and Bi-LSTM
por: Gao, Guohong, et al.
Publicado: (2023) -
Attention Based CNN-ConvLSTM for Pedestrian Attribute Recognition
por: Li, Yang, et al.
Publicado: (2020) -
Aeroengine Working Condition Recognition Based on MsCNN-BiLSTM
por: Zheng, Jinsong, et al.
Publicado: (2022) -
EEG-based emotion recognition using hybrid CNN and LSTM classification
por: Chakravarthi, Bhuvaneshwari, et al.
Publicado: (2022) -
Facial expression recognition in videos using hybrid CNN & ConvLSTM
por: Singh, Rajesh, et al.
Publicado: (2023)