Cargando…
Ventricular Repolarization and Calcium Transient Show Resonant Behavior under Oscillatory Pacing Rate
Cardiac EC coupling is triggered by rhythmic depolarizing current fronts originating from the sino-atrial node, and the way variability in rhythm is associated with variability in action potential duration (APD) and, in turn, in the variability of calcium transient amplitude (CTA) and contraction is...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9313145/ https://www.ncbi.nlm.nih.gov/pubmed/35883429 http://dx.doi.org/10.3390/biom12070873 |
_version_ | 1784754007439310848 |
---|---|
author | Zaniboni, Massimiliano |
author_facet | Zaniboni, Massimiliano |
author_sort | Zaniboni, Massimiliano |
collection | PubMed |
description | Cardiac EC coupling is triggered by rhythmic depolarizing current fronts originating from the sino-atrial node, and the way variability in rhythm is associated with variability in action potential duration (APD) and, in turn, in the variability of calcium transient amplitude (CTA) and contraction is a key determinant of beating stability. Sinusoidal-varying pacing rate is adopted here in order to establish whether APD and CTA oscillations, elicited in a human ventricular AP model (OR) under oscillatory pacing, are consistent with the dynamics of two coupled harmonic oscillators, e.g., a two-degree-of-freedom system of mass and springs (MS model). I show evidence that this is the case, and that the MS model, preliminarily fitted to OR behavior, retains key features of the physiological system, such as the dependence of APD and CTA oscillation amplitudes from average value and from beat-to-beat changes in pacing rate, and the phase relationship between them. The bi-directionality of coupling between APD and CTA makes it difficult to discriminate which one leads EC coupling dynamics under variable pacing. The MS model suggests that the calcium cycling, with its greater inertia chiefly determined by the SR calcium release, is the leading mechanism. I propose the present approach to also be relevant at the whole organ level, where the need of compact representations of electromechanical interaction, particularly in clinical practice, remains urgent. |
format | Online Article Text |
id | pubmed-9313145 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-93131452022-07-26 Ventricular Repolarization and Calcium Transient Show Resonant Behavior under Oscillatory Pacing Rate Zaniboni, Massimiliano Biomolecules Article Cardiac EC coupling is triggered by rhythmic depolarizing current fronts originating from the sino-atrial node, and the way variability in rhythm is associated with variability in action potential duration (APD) and, in turn, in the variability of calcium transient amplitude (CTA) and contraction is a key determinant of beating stability. Sinusoidal-varying pacing rate is adopted here in order to establish whether APD and CTA oscillations, elicited in a human ventricular AP model (OR) under oscillatory pacing, are consistent with the dynamics of two coupled harmonic oscillators, e.g., a two-degree-of-freedom system of mass and springs (MS model). I show evidence that this is the case, and that the MS model, preliminarily fitted to OR behavior, retains key features of the physiological system, such as the dependence of APD and CTA oscillation amplitudes from average value and from beat-to-beat changes in pacing rate, and the phase relationship between them. The bi-directionality of coupling between APD and CTA makes it difficult to discriminate which one leads EC coupling dynamics under variable pacing. The MS model suggests that the calcium cycling, with its greater inertia chiefly determined by the SR calcium release, is the leading mechanism. I propose the present approach to also be relevant at the whole organ level, where the need of compact representations of electromechanical interaction, particularly in clinical practice, remains urgent. MDPI 2022-06-23 /pmc/articles/PMC9313145/ /pubmed/35883429 http://dx.doi.org/10.3390/biom12070873 Text en © 2022 by the author. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zaniboni, Massimiliano Ventricular Repolarization and Calcium Transient Show Resonant Behavior under Oscillatory Pacing Rate |
title | Ventricular Repolarization and Calcium Transient Show Resonant Behavior under Oscillatory Pacing Rate |
title_full | Ventricular Repolarization and Calcium Transient Show Resonant Behavior under Oscillatory Pacing Rate |
title_fullStr | Ventricular Repolarization and Calcium Transient Show Resonant Behavior under Oscillatory Pacing Rate |
title_full_unstemmed | Ventricular Repolarization and Calcium Transient Show Resonant Behavior under Oscillatory Pacing Rate |
title_short | Ventricular Repolarization and Calcium Transient Show Resonant Behavior under Oscillatory Pacing Rate |
title_sort | ventricular repolarization and calcium transient show resonant behavior under oscillatory pacing rate |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9313145/ https://www.ncbi.nlm.nih.gov/pubmed/35883429 http://dx.doi.org/10.3390/biom12070873 |
work_keys_str_mv | AT zanibonimassimiliano ventricularrepolarizationandcalciumtransientshowresonantbehaviorunderoscillatorypacingrate |