Cargando…

Integrating Conformational Dynamics and Perturbation-Based Network Modeling for Mutational Profiling of Binding and Allostery in the SARS-CoV-2 Spike Variant Complexes with Antibodies: Balancing Local and Global Determinants of Mutational Escape Mechanisms

In this study, we combined all-atom MD simulations, the ensemble-based mutational scanning of protein stability and binding, and perturbation-based network profiling of allosteric interactions in the SARS-CoV-2 spike complexes with a panel of cross-reactive and ultra-potent single antibodies (B1-182...

Descripción completa

Detalles Bibliográficos
Autores principales: Verkhivker, Gennady, Agajanian, Steve, Kassab, Ryan, Krishnan, Keerthi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9313167/
https://www.ncbi.nlm.nih.gov/pubmed/35883520
http://dx.doi.org/10.3390/biom12070964
_version_ 1784754013047095296
author Verkhivker, Gennady
Agajanian, Steve
Kassab, Ryan
Krishnan, Keerthi
author_facet Verkhivker, Gennady
Agajanian, Steve
Kassab, Ryan
Krishnan, Keerthi
author_sort Verkhivker, Gennady
collection PubMed
description In this study, we combined all-atom MD simulations, the ensemble-based mutational scanning of protein stability and binding, and perturbation-based network profiling of allosteric interactions in the SARS-CoV-2 spike complexes with a panel of cross-reactive and ultra-potent single antibodies (B1-182.1 and A23-58.1) as well as antibody combinations (A19-61.1/B1-182.1 and A19-46.1/B1-182.1). Using this approach, we quantify the local and global effects of mutations in the complexes, identify protein stability centers, characterize binding energy hotspots, and predict the allosteric control points of long-range interactions and communications. Conformational dynamics and distance fluctuation analysis revealed the antibody-specific signatures of protein stability and flexibility of the spike complexes that can affect the pattern of mutational escape. A network-based perturbation approach for mutational profiling of allosteric residue potentials revealed how antibody binding can modulate allosteric interactions and identified allosteric control points that can form vulnerable sites for mutational escape. The results show that the protein stability and binding energetics of the SARS-CoV-2 spike complexes with the panel of ultrapotent antibodies are tolerant to the effect of Omicron mutations, which may be related to their neutralization efficiency. By employing an integrated analysis of conformational dynamics, binding energetics, and allosteric interactions, we found that the antibodies that neutralize the Omicron spike variant mediate the dominant binding energy hotpots in the conserved stability centers and allosteric control points in which mutations may be restricted by the requirements of the protein folding stability and binding to the host receptor. This study suggested a mechanism in which the patterns of escape mutants for the ultrapotent antibodies may not be solely determined by the binding interaction changes but are associated with the balance and tradeoffs of multiple local and global factors, including protein stability, binding affinity, and long-range interactions.
format Online
Article
Text
id pubmed-9313167
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-93131672022-07-26 Integrating Conformational Dynamics and Perturbation-Based Network Modeling for Mutational Profiling of Binding and Allostery in the SARS-CoV-2 Spike Variant Complexes with Antibodies: Balancing Local and Global Determinants of Mutational Escape Mechanisms Verkhivker, Gennady Agajanian, Steve Kassab, Ryan Krishnan, Keerthi Biomolecules Article In this study, we combined all-atom MD simulations, the ensemble-based mutational scanning of protein stability and binding, and perturbation-based network profiling of allosteric interactions in the SARS-CoV-2 spike complexes with a panel of cross-reactive and ultra-potent single antibodies (B1-182.1 and A23-58.1) as well as antibody combinations (A19-61.1/B1-182.1 and A19-46.1/B1-182.1). Using this approach, we quantify the local and global effects of mutations in the complexes, identify protein stability centers, characterize binding energy hotspots, and predict the allosteric control points of long-range interactions and communications. Conformational dynamics and distance fluctuation analysis revealed the antibody-specific signatures of protein stability and flexibility of the spike complexes that can affect the pattern of mutational escape. A network-based perturbation approach for mutational profiling of allosteric residue potentials revealed how antibody binding can modulate allosteric interactions and identified allosteric control points that can form vulnerable sites for mutational escape. The results show that the protein stability and binding energetics of the SARS-CoV-2 spike complexes with the panel of ultrapotent antibodies are tolerant to the effect of Omicron mutations, which may be related to their neutralization efficiency. By employing an integrated analysis of conformational dynamics, binding energetics, and allosteric interactions, we found that the antibodies that neutralize the Omicron spike variant mediate the dominant binding energy hotpots in the conserved stability centers and allosteric control points in which mutations may be restricted by the requirements of the protein folding stability and binding to the host receptor. This study suggested a mechanism in which the patterns of escape mutants for the ultrapotent antibodies may not be solely determined by the binding interaction changes but are associated with the balance and tradeoffs of multiple local and global factors, including protein stability, binding affinity, and long-range interactions. MDPI 2022-07-10 /pmc/articles/PMC9313167/ /pubmed/35883520 http://dx.doi.org/10.3390/biom12070964 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Verkhivker, Gennady
Agajanian, Steve
Kassab, Ryan
Krishnan, Keerthi
Integrating Conformational Dynamics and Perturbation-Based Network Modeling for Mutational Profiling of Binding and Allostery in the SARS-CoV-2 Spike Variant Complexes with Antibodies: Balancing Local and Global Determinants of Mutational Escape Mechanisms
title Integrating Conformational Dynamics and Perturbation-Based Network Modeling for Mutational Profiling of Binding and Allostery in the SARS-CoV-2 Spike Variant Complexes with Antibodies: Balancing Local and Global Determinants of Mutational Escape Mechanisms
title_full Integrating Conformational Dynamics and Perturbation-Based Network Modeling for Mutational Profiling of Binding and Allostery in the SARS-CoV-2 Spike Variant Complexes with Antibodies: Balancing Local and Global Determinants of Mutational Escape Mechanisms
title_fullStr Integrating Conformational Dynamics and Perturbation-Based Network Modeling for Mutational Profiling of Binding and Allostery in the SARS-CoV-2 Spike Variant Complexes with Antibodies: Balancing Local and Global Determinants of Mutational Escape Mechanisms
title_full_unstemmed Integrating Conformational Dynamics and Perturbation-Based Network Modeling for Mutational Profiling of Binding and Allostery in the SARS-CoV-2 Spike Variant Complexes with Antibodies: Balancing Local and Global Determinants of Mutational Escape Mechanisms
title_short Integrating Conformational Dynamics and Perturbation-Based Network Modeling for Mutational Profiling of Binding and Allostery in the SARS-CoV-2 Spike Variant Complexes with Antibodies: Balancing Local and Global Determinants of Mutational Escape Mechanisms
title_sort integrating conformational dynamics and perturbation-based network modeling for mutational profiling of binding and allostery in the sars-cov-2 spike variant complexes with antibodies: balancing local and global determinants of mutational escape mechanisms
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9313167/
https://www.ncbi.nlm.nih.gov/pubmed/35883520
http://dx.doi.org/10.3390/biom12070964
work_keys_str_mv AT verkhivkergennady integratingconformationaldynamicsandperturbationbasednetworkmodelingformutationalprofilingofbindingandallosteryinthesarscov2spikevariantcomplexeswithantibodiesbalancinglocalandglobaldeterminantsofmutationalescapemechanisms
AT agajaniansteve integratingconformationaldynamicsandperturbationbasednetworkmodelingformutationalprofilingofbindingandallosteryinthesarscov2spikevariantcomplexeswithantibodiesbalancinglocalandglobaldeterminantsofmutationalescapemechanisms
AT kassabryan integratingconformationaldynamicsandperturbationbasednetworkmodelingformutationalprofilingofbindingandallosteryinthesarscov2spikevariantcomplexeswithantibodiesbalancinglocalandglobaldeterminantsofmutationalescapemechanisms
AT krishnankeerthi integratingconformationaldynamicsandperturbationbasednetworkmodelingformutationalprofilingofbindingandallosteryinthesarscov2spikevariantcomplexeswithantibodiesbalancinglocalandglobaldeterminantsofmutationalescapemechanisms