Cargando…
Enhancer-LSTMAtt: A Bi-LSTM and Attention-Based Deep Learning Method for Enhancer Recognition
Enhancers are short DNA segments that play a key role in biological processes, such as accelerating transcription of target genes. Since the enhancer resides anywhere in a genome sequence, it is difficult to precisely identify enhancers. We presented a bi-directional long-short term memory (Bi-LSTM)...
Autores principales: | Huang, Guohua, Luo, Wei, Zhang, Guiyang, Zheng, Peijie, Yao, Yuhua, Lyu, Jianyi, Liu, Yuewu, Wei, Dong-Qing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9313278/ https://www.ncbi.nlm.nih.gov/pubmed/35883552 http://dx.doi.org/10.3390/biom12070995 |
Ejemplares similares
-
MPMABP: A CNN and Bi-LSTM-Based Method for Predicting Multi-Activities of Bioactive Peptides
por: Li, You, et al.
Publicado: (2022) -
DeepLBCEPred: A Bi-LSTM and multi-scale CNN-based deep learning method for predicting linear B-cell epitopes
por: Qi, Yue, et al.
Publicado: (2023) -
MultiScale-CNN-4mCPred: a multi-scale CNN and adaptive embedding-based method for mouse genome DNA N4-methylcytosine prediction
por: Zheng, Peijie, et al.
Publicado: (2023) -
Identifying and Classifying Enhancers by Dinucleotide-Based Auto-Cross Covariance and Attention-Based Bi-LSTM
por: Zhao, Shulin, et al.
Publicado: (2022) -
A Convolutional Neural Network Face Recognition Method Based on BiLSTM and Attention Mechanism
por: Qi, Xiaobo, et al.
Publicado: (2023)