Cargando…
Dynamic Prediction of Mechanical Thrombectomy Outcome for Acute Ischemic Stroke Patients Using Machine Learning
The unfavorable outcome of acute ischemic stroke (AIS) with large vessel occlusion (LVO) is related to clinical factors at multiple time points. However, predictive models used for dynamically predicting unfavorable outcomes using clinically relevant preoperative and postoperative time point variabl...
Autores principales: | Hu, Yixing, Yang, Tongtong, Zhang, Juan, Wang, Xixi, Cui, Xiaoli, Chen, Nihong, Zhou, Junshan, Jiang, Fuping, Zhu, Junrong, Zou, Jianjun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9313360/ https://www.ncbi.nlm.nih.gov/pubmed/35884744 http://dx.doi.org/10.3390/brainsci12070938 |
Ejemplares similares
-
Interpretable Machine Learning Model Predicting Early Neurological Deterioration in Ischemic Stroke Patients Treated with Mechanical Thrombectomy: A Retrospective Study
por: Yang, Tongtong, et al.
Publicado: (2023) -
Prediction-Driven Decision Support for Patients With Mild Stroke: A Model Based on Machine Learning Algorithms
por: Lin, Xinping, et al.
Publicado: (2021) -
Machine learning to predict futile recanalization of large vessel occlusion before and after endovascular thrombectomy
por: Lin, Xinping, et al.
Publicado: (2022) -
A Dynamic Nomogram to Identify Patients at High Risk of Poor Outcome in Stroke Patients with Chronic Kidney Disease
por: Wang, Fusang, et al.
Publicado: (2022) -
Safety and Efficacy of Tirofiban Combined With Mechanical Thrombectomy Depend on Ischemic Stroke Etiology
por: Sun, Chao, et al.
Publicado: (2019)