Cargando…
Spiking Neural Networks and Their Applications: A Review
The past decade has witnessed the great success of deep neural networks in various domains. However, deep neural networks are very resource-intensive in terms of energy consumption, data requirements, and high computational costs. With the recent increasing need for the autonomy of machines in the r...
Autores principales: | Yamazaki, Kashu, Vo-Ho, Viet-Khoa, Bulsara, Darshan, Le, Ngan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9313413/ https://www.ncbi.nlm.nih.gov/pubmed/35884670 http://dx.doi.org/10.3390/brainsci12070863 |
Ejemplares similares
-
Narrow Band Active Contour Attention Model for Medical Segmentation
por: Le, Ngan, et al.
Publicado: (2021) -
A scalable implementation of the recursive least-squares algorithm for training spiking neural networks
por: Arthur, Benjamin J., et al.
Publicado: (2023) -
Optimizing the Energy Consumption of Spiking Neural Networks for Neuromorphic Applications
por: Sorbaro, Martino, et al.
Publicado: (2020) -
Effects of Spike Anticipation on the Spiking Dynamics of Neural Networks
por: de Santos-Sierra, Daniel, et al.
Publicado: (2015) -
Integrating Non-spiking Interneurons in Spiking Neural Networks
por: Strohmer, Beck, et al.
Publicado: (2021)