Cargando…
Prediction Model of Hemorrhage Transformation in Patient with Acute Ischemic Stroke Based on Multiparametric MRI Radiomics and Machine Learning
Intravenous thrombolysis is the most commonly used drug therapy for patients with acute ischemic stroke, which is often accompanied by complications of intracerebral hemorrhage transformation (HT). This study proposed to build a reliable model for pretreatment prediction of HT. Specifically, 5400 ra...
Autores principales: | Meng, Yucong, Wang, Haoran, Wu, Chuanfu, Liu, Xiaoyu, Qu, Linhao, Shi, Yonghong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9313447/ https://www.ncbi.nlm.nih.gov/pubmed/35884664 http://dx.doi.org/10.3390/brainsci12070858 |
Ejemplares similares
-
Prediction of Hemorrhagic Transformation after Ischemic Stroke Using Machine Learning
por: Choi, Jeong-Myeong, et al.
Publicado: (2021) -
Repeatability of Multiparametric Prostate MRI Radiomics Features
por: Schwier, Michael, et al.
Publicado: (2019) -
Prognosis of ischemic stroke predicted by machine learning based on multi-modal MRI radiomics
por: Yu, Huan, et al.
Publicado: (2023) -
Radiomics and Machine Learning with Multiparametric Breast MRI for Improved Diagnostic Accuracy in Breast Cancer Diagnosis
por: Daimiel Naranjo, Isaac, et al.
Publicado: (2021) -
Integrated radiomic framework for breast cancer and tumor biology using advanced machine learning and multiparametric MRI
por: Parekh, Vishwa S., et al.
Publicado: (2017)