Cargando…

β-Adrenergic Receptor Stimulation Maintains NCX-CaMKII Axis and Prevents Overactivation of IL6R-Signaling in Cardiomyocytes upon Increased Workload

Excessive β-adrenergic stimulation and tachycardia are potent triggers of cardiac remodeling; however, their exact cellular effects remain elusive. Here, we sought to determine the potency of β-adrenergic stimulation and tachycardia to modulate gene expression profiles of cardiomyocytes. Using neona...

Descripción completa

Detalles Bibliográficos
Autores principales: Matzer, Ingrid, Voglhuber, Julia, Kiessling, Mara, Djalinac, Nataša, Trummer-Herbst, Viktoria, Mabotuwana, Nishani, Rech, Lavinia, Holzer, Michael, Sossalla, Samuel, Rainer, Peter P., Zirlik, Andreas, Ljubojevic-Holzer, Senka
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9313457/
https://www.ncbi.nlm.nih.gov/pubmed/35884952
http://dx.doi.org/10.3390/biomedicines10071648
Descripción
Sumario:Excessive β-adrenergic stimulation and tachycardia are potent triggers of cardiac remodeling; however, their exact cellular effects remain elusive. Here, we sought to determine the potency of β-adrenergic stimulation and tachycardia to modulate gene expression profiles of cardiomyocytes. Using neonatal rat ventricular cardiomyocytes, we showed that tachycardia caused a significant upregulation of sodium–calcium exchanger (NCX) and the activation of calcium/calmodulin-dependent kinase II (CaMKII) in the nuclear region. Acute isoprenaline treatment ameliorated NCX-upregulation and potentiated CaMKII activity, specifically on the sarcoplasmic reticulum and the nuclear envelope, while preincubation with the β-blocker propranolol abolished both isoprenaline-mediated effects. On a transcriptional level, screening for hypertrophy-related genes revealed tachycardia-induced upregulation of interleukin-6 receptor (IL6R). While isoprenaline prevented this effect, pharmacological intervention with propranolol or NCX inhibitor ORM-10962 demonstrated that simultaneous CaMKII activation on the subcellular Ca(2+) stores and prevention of NCX upregulation are needed for keeping IL6R activation low. Finally, using hypertensive Dahl salt-sensitive rats, we showed that blunted β-adrenergic signaling is associated with NCX upregulation and enhanced IL6R signaling. We therefore propose a previously unrecognized protective role of β-adrenergic signaling, which is compromised in cardiac pathologies, in preventing IL6R overactivation under increased workload. A better understanding of these processes may contribute to refinement of therapeutic options for patients receiving β-blockers.