Cargando…
Activating a [FeFe] Hydrogenase Mimic for Hydrogen Evolution under Visible Light
Inspired by the active center of the natural [FeFe] hydrogenases, we designed a compact and precious metal‐free photosensitizer‐catalyst dyad (PS‐CAT) for photocatalytic hydrogen evolution under visible light irradiation. PS‐CAT represents a prototype dyad comprising π‐conjugated oligothiophenes as...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9313588/ https://www.ncbi.nlm.nih.gov/pubmed/35178850 http://dx.doi.org/10.1002/anie.202202079 |
Sumario: | Inspired by the active center of the natural [FeFe] hydrogenases, we designed a compact and precious metal‐free photosensitizer‐catalyst dyad (PS‐CAT) for photocatalytic hydrogen evolution under visible light irradiation. PS‐CAT represents a prototype dyad comprising π‐conjugated oligothiophenes as light absorbers. PS‐CAT and its interaction with the sacrificial donor 1,3‐dimethyl‐2‐phenylbenzimidazoline were studied by steady‐state and time‐resolved spectroscopy coupled with electrochemical techniques and visible light‐driven photocatalytic investigations. Operando EPR spectroscopy revealed the formation of an active [Fe(I)Fe(0)] species—in accordance with theoretical calculations—presumably driving photocatalysis effectively (TON≈210). |
---|