Cargando…
Transfer learning for data‐efficient abdominal muscle segmentation with convolutional neural networks
BACKGROUND: Skeletal muscle segmentation is an important procedure for assessing sarcopenia, an emerging imaging biomarker of patient frailty. Data annotation remains the bottleneck for training deep learning auto‐segmentation models. PURPOSE: There is a need to define methodologies for applying mod...
Autores principales: | McSweeney, Dónal M., Henderson, Edward G., van Herk, Marcel, Weaver, Jamie, Bromiley, Paul A., Green, Andrew, McWilliam, Alan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9313817/ https://www.ncbi.nlm.nih.gov/pubmed/35170063 http://dx.doi.org/10.1002/mp.15533 |
Ejemplares similares
-
Automated gross tumor volume contour generation for large‐scale analysis of early‐stage lung cancer patients planned with 4D‐CT
por: Davey, Angela, et al.
Publicado: (2020) -
Automatic detection of contouring errors using convolutional neural networks
por: Rhee, Dong Joo, et al.
Publicado: (2019) -
Image‐based shading correction for narrow‐FOV truncated pelvic CBCT with deep convolutional neural networks and transfer learning
por: Rossi, Matteo, et al.
Publicado: (2021) -
Segmentation of dental cone‐beam CT scans affected by metal artifacts using a mixed‐scale dense convolutional neural network
por: Minnema, Jordi, et al.
Publicado: (2019) -
Automatic contouring system for cervical cancer using convolutional neural networks
por: Rhee, Dong Joo, et al.
Publicado: (2020)