Cargando…
Improved Battery Cycle Life Prediction Using a Hybrid Data‐Driven Model Incorporating Linear Support Vector Regression and Gaussian
The ability to accurately predict lithium‐ion battery life‐time already at an early stage of battery usage is critical for ensuring safe operation, accelerating technology development, and enabling battery second‐life applications. Many models are unable to effectively predict battery life‐time at e...
Autores principales: | Alipour, Mohammad, Tavallaey, Shiva Sander, Andersson, Anna M., Brandell, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9313841/ https://www.ncbi.nlm.nih.gov/pubmed/35075749 http://dx.doi.org/10.1002/cphc.202100829 |
Ejemplares similares
-
Estimation of diffusion coefficients from voltammetric signals by support vector and gaussian process regression
por: Bogdan, Martin, et al.
Publicado: (2014) -
Regression with Gaussian Processes
por: Kalia, Saarik
Publicado: (2016) -
Gaussian Process Regression for Data Fulfilling Linear Differential Equations with Localized Sources †
por: Albert, Christopher G., et al.
Publicado: (2020) -
Sums and Gaussian vectors
por: Yurinsky, Vadim Vladimirovich
Publicado: (1995) -
Gaussian and non-Gaussian linear time series and random fields
por: Rosenblatt, Murray
Publicado: (2000)