Cargando…

Leaf out time correlates with wood anatomy across large geographic scales and within local communities

There is a long‐standing idea that the timing of leaf production in seasonally cold climates is linked to xylem anatomy, specifically vessel diameter because of the hydraulic requirements of expanding leaves. We tested for a relationship between the timing of leaf out and vessel diameter in 220 plan...

Descripción completa

Detalles Bibliográficos
Autores principales: Savage, Jessica A., Kiecker, Thomas, McMann, Natalie, Park, Daniel, Rothendler, Matthew, Mosher, Kennedy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9313884/
https://www.ncbi.nlm.nih.gov/pubmed/35179794
http://dx.doi.org/10.1111/nph.18041
Descripción
Sumario:There is a long‐standing idea that the timing of leaf production in seasonally cold climates is linked to xylem anatomy, specifically vessel diameter because of the hydraulic requirements of expanding leaves. We tested for a relationship between the timing of leaf out and vessel diameter in 220 plants in three common gardens accounting for species’ phylogenetic relationships. We investigated how vessel diameter related to wood porosity, plant height and leaf length. We also used dye perfusion tests to determine whether plants relied on xylem produced during the previous growing season at the time of leaf out. In all three gardens, there was later leaf out in species with wider vessels. Ring‐porous species had the widest vessels, exhibited latest leaf out and relied less on xylem made during the previous growing season than diffuse‐porous species. Wood anatomy and leaf phenology did not exhibit a phylogenetic signal. The timing of leaf out is correlated with wood anatomy across species regardless of species’ geographic origin and phylogenetic relationships. This correlation could be a result of developmental and physiological links between leaves and wood or tied to a larger safety efficiency trade‐off.