Cargando…
Tandem Friedel‐Crafts‐Alkylation‐Enantioselective‐Protonation by Artificial Enzyme Iminium Catalysis
The incorporation of organocatalysts into protein scaffolds holds the promise of overcoming some of the limitations of this powerful catalytic approach. Previously, we showed that incorporation of the non‐canonical amino acid para‐aminophenylalanine into the non‐enzymatic protein scaffold LmrR forms...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9313897/ https://www.ncbi.nlm.nih.gov/pubmed/35915643 http://dx.doi.org/10.1002/cctc.202101875 |
Sumario: | The incorporation of organocatalysts into protein scaffolds holds the promise of overcoming some of the limitations of this powerful catalytic approach. Previously, we showed that incorporation of the non‐canonical amino acid para‐aminophenylalanine into the non‐enzymatic protein scaffold LmrR forms a proficient and enantioselective artificial enzyme (LmrR_pAF) for the Friedel‐Crafts alkylation of indoles with enals. The unnatural aniline side‐chain is directly involved in catalysis, operating via a well‐known organocatalytic iminium‐based mechanism. In this study, we show that LmrR_pAF can enantioselectively form tertiary carbon centres not only during C−C bond formation, but also by enantioselective protonation, delivering a proton to one face of a prochiral enamine intermediate. The importance of various side‐chains in the pocket of LmrR is distinct from the Friedel‐Crafts reaction without enantioselective protonation, and two particularly important residues were probed by exhaustive mutagenesis. |
---|